000890775 001__ 890775
000890775 005__ 20220930130308.0
000890775 0247_ $$2doi$$a10.1186/s40694-021-00109-4
000890775 0247_ $$2Handle$$a2128/27341
000890775 0247_ $$2altmetric$$aaltmetric:101499668
000890775 0247_ $$2pmid$$a33676585
000890775 037__ $$aFZJ-2021-01191
000890775 082__ $$a630
000890775 1001_ $$0P:(DE-Juel1)171232$$aJansen, Roman$$b0
000890775 245__ $$aA fully automated pipeline for the dynamic at-line morphology analysis of microscale Aspergillus cultivation
000890775 260__ $$aLondon$$bBioMed Central$$c2021
000890775 3367_ $$2DRIVER$$aarticle
000890775 3367_ $$2DataCite$$aOutput Types/Journal article
000890775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630413217_10532
000890775 3367_ $$2BibTeX$$aARTICLE
000890775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890775 3367_ $$00$$2EndNote$$aJournal Article
000890775 520__ $$aBackgroundMorphology, being one of the key factors influencing productivity of filamentous fungi, is of great interest during bioprocess development. With increasing demand of high-throughput phenotyping technologies for fungi due to the emergence of novel time-efficient genetic engineering technologies, workflows for automated liquid handling combined with high-throughput morphology analysis have to be developed.ResultsIn this study, a protocol allowing for 48 parallel microbioreactor cultivations of Aspergillus carbonarius with non-invasive online signals of backscatter and dissolved oxygen was established. To handle the increased cultivation throughput, the utilized microbioreactor is integrated into a liquid handling platform. During cultivation of filamentous fungi, cell suspensions result in either viscous broths or form pellets with varying size throughout the process. Therefore, tailor-made liquid handling parameters such as aspiration/dispense height, velocity and mixing steps were optimized and validated. Development and utilization of a novel injection station enabled a workflow, where biomass samples are automatically transferred into a flow through chamber fixed under a light microscope. In combination with an automated image analysis concept, this enabled an automated morphology analysis pipeline. The workflow was tested in a first application study, where the projected biomass area was determined at two different cultivation temperatures and compared to the microbioreactor online signals.ConclusionsA novel and robust workflow starting from microbioreactor cultivation, automated sample harvest and processing via liquid handling robots up to automated morphology analysis was developed. This protocol enables the determination of projected biomass areas for filamentous fungi in an automated and high-throughput manner. This measurement of morphology can be applied to describe overall pellet size distribution and heterogeneity.
000890775 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000890775 7001_ $$0P:(DE-Juel1)174233$$aKüsters, Kira$$b1
000890775 7001_ $$0P:(DE-Juel1)161365$$aMorschett, Holger$$b2
000890775 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b3
000890775 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b4$$eCorresponding author
000890775 773__ $$0PERI:(DE-600)2806612-1$$a10.1186/s40694-021-00109-4$$n2$$p1-10$$tFungal Biology and Biotechnology$$v8$$x2054-3085$$y2021
000890775 8564_ $$uhttps://juser.fz-juelich.de/record/890775/files/s40694-021-00109-4.pdf$$yOpenAccess
000890775 8767_ $$8SN-2021-00411-b$$92021-06-18$$d2021-02-19$$eAPC$$jDEAL$$lDEAL: Springer
000890775 909CO $$ooai:juser.fz-juelich.de:890775$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000890775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174233$$aForschungszentrum Jülich$$b1$$kFZJ
000890775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b3$$kFZJ
000890775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b4$$kFZJ
000890775 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000890775 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890775 9141_ $$y2021
000890775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000890775 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890775 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-23
000890775 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-23
000890775 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890775 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-08-23
000890775 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-23
000890775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000890775 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-23
000890775 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-23
000890775 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000890775 980__ $$ajournal
000890775 980__ $$aVDB
000890775 980__ $$aI:(DE-Juel1)IBG-1-20101118
000890775 980__ $$aAPC
000890775 980__ $$aUNRESTRICTED
000890775 9801_ $$aAPCUSERDEL
000890775 9801_ $$aAPC
000890775 9801_ $$aFullTexts