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Abstract
The random phase approximation for polymer blends was developed by H. Benoît and described small angle scattering functions
as well as mean field phase boundaries. It is a pure mean field theory that loses validity close to the real phase boundaries due to
strong fluctuations. However, it gives a very clear roadmap about phase diagrams and scattering functions. A simplification of the
random phase approximation is discussed that comes into effect when several polymers are mixed that involve a rather low
number of chemically different repeat units. Then, the correlation functions of the same repeat unit pairs can be added up in a
specific way such that the overall complexity for the calculations is reduced. The scattering functions and mean field phase
boundaries are discussed within this concept.
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Introduction

The random phase approximation is a mean field approach
that is often applied to polymer blends [1–3]. It yields a sim-
plified view on the scattering function and phase diagrams
including interactions that neglects strong thermal composi-
tion fluctuations close to the phase transitions that can be of
first or second order [4–7]. For binary homopolymer blends, it
was the Flory-Huggins theory that described the mean field
binodal and spinodal in a rather simple manner [8–12]. For
this, entropic contributions were identified to arise from the
translational entropy of placing polymers in a volume, and
enthalpic contributions arise due to the monomer-monomer
interactions. All of this was described on a cubic lattice. For
the scattering functions [1–3], the undisturbed correlations
play the role of entropy, while the interactions remain in this
picture enthalpic (the independence of the scattering vector Q
corresponds to local neighbor-neighbor interactions).
Experimentally [4] and theoretically [13, 14], the interaction
parameter displayed enthalpic and entropic properties that are
due to monomeric structure and compressibility or free vol-
ume. However, the undisturbed correlations remained to be

fully understood on the basis of the polymer architecture. For
diblock copolymer blends, it was L. Leibler who introduced
the mean field treatment and who predicted a phase diagram
and a scattering function [15]. The strength of the mean field
approach is that it can clearly give ideas about the scattering
pattern and the phase diagram in a simplified way but for
rather complicated polymer architectures and mixtures of
them [16]. In this way, a simplified road map of a polymeric
system is obtained that then could be refined by including
strong fluctuations, either experimentally and/or theoretically.
So for A/B/AB homopolymer/diblock copolymer blends, the
group around F. Bates studies extensively the phase diagrams
and scattering [17, 18]. Polymeric systems with many compo-
nents are nowadays still highly interesting in the field of or-
ganic solar cells [19].

Theory

Let us consider P different polymers, being different either in
architecture or in the making by chemically different mono-
mers. I call Ni the degree of polymerization (number of repeat
units) that enters in the molecular volume of the polymers Vi ∝
Ni and the radius of gyration Rg,i ∝ √Ni (i = 1..P). I callMi the
number of chemically different repeat unit species
(monomers) of polymer species i (to some extent the number
Mi could be the number of blocks, but in the later example of
an ABA triblock copolymer Mi = 2 because I did not
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distinguish the A repeat units of the two blocks.) The overall
number of chemically different repeat unit species of the
whole set of polymers I call M.

The well-known formula of Benoit [1–3] is derived from a
mean field approach applied to the scattering of polymers
(polymer blends). It reads:

S ¼ S−1
0 þ V

� �−1 ð1Þ

where S is the correlation matrix of the blended polymers, S0
the correlation matrix of undisturbed polymers, and V the
interaction matrix. Each row and column stands for a distin-
guishable repeat unit species (monomer) of a specific compo-
nent (distinguishable polymer) that in principle can all be dis-
tinguished even if they are chemically identical (and then the
interactions and scattering lengths will be the same in the
respective positions of the matrices). So a system with P com-
ponents (i.e. different polymers), where each polymer has Mi

chemically different repeat unit species, would lead to a total
dimensionality of ΣMi for Eq. (1). I now want to extend the
matrices in this sense that each single polymer can in principle
carry correlations between all occurring chemically different
repeat unit species, but the chemically same repeat unit
species–even between different polymers–shall then be treat-
ed equally. The dimensionality of Eq. (1) becomes then PM
(with M = max Mi in most cases). So there are undisturbed
correlation matrices s0,i that have the dimension from all
chemically distinguishable repeat unit species. If the repeat
units of a particular species do not appear in this component
i, the corresponding entries are zero (or a small δ). On the
higher level, S0 is now a “diagonal” matrix with the entries
of the s0,i matrices:

S0 ¼
s0;1 0 ⋯ 0
0 s0;2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 s0;N

0

BB@

1

CCA ð2Þ

where each polymer i is treated separately (i = 1..P), while the
interaction matrix now looks like:

V ¼
v ⋯ v
⋮ ⋱ ⋮
v ⋯ v

0

@

1

A ¼
1
⋮
1

0

@

1

A 1 ⋯ 1ð Þ⊗v

¼ 1
!

1
!tr

⊗v ð3Þ

where the latter expression is to be understood in the bracket
writing that is frequently used in quantum mechanics (dyadic

product). Let us call the vector 1
!

that I do not normalize. All
matrices S0, V, s0,i and v are Hermitian by definition. For a

given vector of scattering length densities b
!
, I would obtain

the final scattering function S(Q):

S Qð Þ ¼ 1
!
⊗ b

!
� �tr

S−1
0 þ V

� �−1
1
!
⊗ b
!� �

ð4Þ

From that I can expand the expression for large interactions
v→∞ (incompressibility):

S Qð Þ ¼ 1
!
⊗ b

!
� �tr 1

V
−

1

VS0V
þ 1

VS0VS0V
−⋯

� �
1
!
⊗ b
!� �

ð5Þ

From the bracket writing of the interaction matrix, I then
obtain:

S Qð Þ ¼ 1
!⊗ b

!
� �tr 1

1
!

1
!tr

⊗v
−

1

1
!

1
!tr

⊗vs0;þv
þ 1

1
!

1
!tr

⊗vs0;þvs0;þv
−⋯

0

@

1

A 1
!⊗ b

!� �

ð6Þ
with

s0;þ ¼ ∑s0;i ð7Þ

For the reciprocal matrix of V, i.e. the first term, I obtain:

1
!⊗ b

!
� �tr 1

V
1
!⊗ b

!� �

¼ 1
!⊗ b

!
� �tr 1

P2 1
!

1
!tr

⊗v−1 þ ∑ r!i r
!tr

i ⊗ε−1i

� �
1
!⊗ b

!� �

¼ b
!tr

v−1 b
!

ð8Þ

The normalization by the number of polymer components

P is due to the fact that the vector 1
!

remains to be normalized.

The vectors r!i are normalized and orthogonal to 1
!
, and they

altogether span the full vector space. The rather large contri-

butions deviating from the vector 1
!

and involving εi become
zero in the projection. Now applying this technique to all
terms, the final expression is

S Qð Þ ¼ b
!tr

s−10;þ þ v
� �−1

b
! ð9Þ

This simplification becomes evident if the different poly-
mers include many chemically identical repeat units such that
they are not distinguished in the final expression anymore.
The dimensionality of Eq. 9 is now M. A simplification is
reached when M < ΣMi.
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Examples

One example could be a mixture of a homopolymer A, an AB
diblock copolymer and a symmetric (or telechelic) ABA tri-
block copolymer that all consist of repeat units of type A and/
or B. Then, the final expression looks like [20]:

s0;þ ¼ s01 þ s02 þ s03 ð10Þ

with the undisturbed correlation matrices:

s01 ¼ ϕ1V1
g1 0
0 0

� �
ð11Þ

s02 ¼ ϕ2V2

g f 2

1

2
g1−g f 2

−g1− f 2
� �

1

2
g1−g f 2

−g1− f 2
� �

g1− f 2

0

B@

1

CA ð12Þ

s03 ¼ ϕ3V3
2g f 3

þ g1 þ g1−2 f 3−2g1− f 3 g1− f 3−g f 3
−g1−2 f 3

g1− f 3−g f 3
−g1−2 f 3 g1−2 f 3

� �
ð13Þ

with the volume fractions ϕi and the molar volumes Vi of
all polymers and the modified Debye functions g f xð Þ ¼ 2

x2

exp −fxð Þð −1þ fxÞ with x ¼ Q2R2
g;i. The magnitude Q is the

scattering vector, and Rg,i is the radius of gyration of the whole
respective polymer. The fractions of block A in the three
polymers are 1, f2 and f3, where the latter measures the single
end-block that occurs at either end and thus must be smaller
than ½. Equation (12 and (13 can be obtained by shifting the
integration limits of the correlation functions, and so all ex-
pressions are sums of Debye functions. This polymeric system
was motivated in a study of a bad batch of diblock copoly-
mers, where on the one hand homopolymers were left from an
incomplete functionalization for the second block and triblock
copolymers occurred due to the presence of oxygen in the
termination such that two B-blocks were linked together
[20]. For simplicity, I can assume f2 = ½ and f3 = ¼. In this
two-dimensional case (with only repeat units of type A and
B), the additional simplification can be made as a result of
incompressibility (vAA, vBB, vAB large and negative):

S Qð Þ ¼ Δρ2

sum s0;þ
det s0;þ

−2χ
ð14Þ

with the sum over all matrix elements in sum s0,+ and the
interaction parameter χ ¼ detv

2 vi; j
¼ 1

2 2vA;B−vA;A−vB;B
� �

and the

contrast Δρ2. The whole formula is valid for large matrix
elements vi,j. In linear chains, the sum over all matrix elements
in s0,+ is connected to whole chain scattering ~g1. This formu-
la has been found many times in the literature [3, 21].

For clarity, I calculated the scattering functions for the three
materials and their mixtures. The molar volumes of an A and/or
B block were assumed to be 20.,000 cm3/mol (only in the tri-
block the B-blockwas double this size). The f-values were f2 =½

and f3 = ¼. The radii of gyration were connected to values for
poly butylene oxide [22] as an example (Rg1 = 32Å, Rg2 = 45Å,
Rg3 = 63Å), and the compositions were ϕ1 = 0.1, ϕ2 = 0.8 and
ϕ3 = 0.1. We can see the scattering functions in Fig. 1. All
scattering is obtained by dividing by the contrast Δρ. For the
homopolymer, I multiplied by the composition ϕ1 = 0.1.
Otherwise for the pure components, I assumed the compositions
ϕi = 1. We can see that the peak of the mixture lies between the
diblock and triblock copolymer, and the forward scattering is
elevated due to the presence of homopolymer (A composition
can fluctuate at long length scales), while the block copolymers
display the correlation hole at long length scales (no fluctuations
at long length scales due to the covalent bond betweenA and B).

In the next example, the interaction parameter is χ = 0.0001
mol/cm3 (see Fig. 2). Furthermore, the original formulation with
extended dimensions (Eqs. (1)–(3), see Appendix (16)–(23)) is
tested against the final formulation (Eqs. (10)–(14)) with a tran-
sition of compressibility, i.e. vAA = vBB = 0.001 over 0.01 mol/
cm3 to ∞ and the respective vAB = vAA + χ. For a rather com-
pressible system (stage 1), a nearly constant contribution is
added to the scattering of the incompressible system. This addi-
tive contribution becomes smaller for a less compressible system
(stage 2). Finally, the incompressible system does not show any
numerically significant differences between the different formu-
lations of Eqs. (16)–(18) (Appendix) vs. Eq. (14). So, the nu-
merical calculations also prove the validity of Eq. (14) with
reduced dimensions in the limit of incompressibility.

The diblock copolymer that the model was developed for
was a polybutadiene-polyisoprene (Fig. 3) with impurities
[20]. The model could easily be adapted by changing the
homopolymer fraction to 30% and the diblock copolymer

Fig. 1 The scattering functions of a homopolymer, a diblock copolymer
and a triblock copolymer and the resulting one of a mixture, all with no
preferable interaction, i.e. χ = 0
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fraction to 60%. The radii of gyration were multiplied by 5,
the interaction parameter was χ = 0.000047 mol/cm3, and the
molar volume was 3.7 x 105 cm3/mol. As one can see, the
model describes the scattering very well. The high amount of
homopolymer is in the range measured by a GPC/SEC trace.
However, the polydispersity of the block fraction f could also
contribute to the high scattering level at lowest Q. We discuss
polydispersity further below.

Generally, mean field phase diagrams, i.e. the spinodals,
can be obtained by finding the zeros of the determinant:

det s−10;þ þ v
� �

¼ 0 ð15Þ

By the analysis, which vector leads to the zero of the determi-
nant, one can distinguish the type of phase separation [16, 23]. An
example was the blend of an AB and an BC diblock copolymer,
where the indices follow the order A, B, C. Then, the vector
(1,0,−1)/√2 at the critical scattering vector Q* = 0 indicates mac-
rophase separation, and another vector including components of
(1, 2, 1)/√6 at a critical scattering vector Q* > 0 indicates micro-
phase separation. The periodicity of the phase-separated domains
is given by d = 2π/Q*.When the two conditionsmerge at a single
point, the Lifshitz critical point is obtained. Here, the macrophase
and microphase separations are indistinguishable. However, in
the practical examples, this behavior has not been observed
[19]. Another example for a Lifshitz criticality is the mixture of
A/B homopolymers with AB diblock copolymers [24, 25]. This
criticality leads to a formation of bicontinuous microemulsion
domain structures that extend to quite low temperatures. It has
to be mentioned that the quite severe extension of the
microemulsion phase is due to the presence of strong fluctuations
that are neglected by the mean field approach discussed here.

In the example system, for which I calculated the scattering
functions, all matrices become 2-dimensional, and a further
simplification applies: The denominator of Eq. 14 must be-
come zero at the mean field phase boundary, and so values of
the interaction parameter χ can be calculated for the Q-value
zero and at the minimum Q* of sum s0,+ / det s0,+. The two
phase boundaries and the values of Q* are depicted in Fig. 4.
The phase boundary connected to Q = 0 is the spinodal of the
macrophase separation and the other one the order-disorder
phase transition (i.e. microphase transition). As a system, we

Fig. 2 The scattering function of a mixture of an A-homopolymer, an A-
B diblock copolymer and an A-B-A triblock copolymer (see text) with a
finite interaction parameter χ = 0.0001 mol/cm3. Additionally, the
monomer-monomer interactions are rendered from vAA = vBB = 0.001
(stage 1) over 0.01mol/cm3 (stage 2) to∞ (and the respective vAB = vAA +
χ) to simulate different states of compressibility

Fig. 3 The measured polybutadiene-polyisoprene (d-PB(1,4)-PI) diblock
copolymer at 130°C with a molar mass of 350 kg/mol as described with the
model. The homopolymer fraction was 30%. The interaction parameter was
χ = 0.000047 mol/cm3. The set of radii of gyration was 5 times larger

Fig. 4 Phase diagram of an A-homopolymer, an A-B diblock copolymer
and an A-B-A triblock copolymer (see text). The molar volume of the A-
homopolymer of 20.,000 cm3/mol is constant while the molar volumes of
the A-blocks vary according to the f-value, i.e. f2=f and f3=f/2.
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assumed that the A homopolymer has a constant molar vol-
ume of V1 = 20.,000 cm3/mol, while the A block molar vol-
umes vary with the f-value (f3 = f2/2).

It should be stressed that the equations above hold for one-
phase disordered systems. So, if the phase boundary is
crossed, the approach is invalid and does not predict the scat-
tering function anymore. Good comparisons between calcula-
tions and experiments can be found in [21].

The simplification of reduced dimensions as expressed in
Eqs. (9) and (15) was already implicitly used for polydisperse
systems [26, 27], where one simply argues that the different
components due to the polydispersity are such similar that this
simplified approach is valid. However, I argue that even very
different polymers can lead to the simplified expressions as
mentioned in this paper.

Conclusions

The final theoretical result of this paper is given in Eqs. (7) and
(9). It reduces the unnecessary dimensions of the correlations
that may arise if chemically same repeat units on different poly-
mers are distinguished. I presented a calculation on how these
dimensions can be minimized, although the intermediate matri-
ces are expanded to dimension n × n = (PM) × (PM), with P
being the number of different polymers andM being the overall
number of all chemically different repeat units involved. The

final formula reduces the matrices to a dimension M × M. An
example for a blend of an A homopolymer, an AB diblock
copolymer and a symmetric ABA triblock copolymer is
discussed explicitly. We displayed scattering functions and a
mean field phase diagram. Other examples of AB and BC
diblock copolymer blends and A/B homopolymer blends with
AB diblock copolymers are discussed peripherally and are re-
ferred to the cited literature.
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Appendix

For the example system of the three polymers, an A homopol-
ymer, an AB diblock copolymer and an ABA triblock copol-
ymer (Eqs. (11)–(13)), we explicitly show the simplification.
The original correlation matrix S0 is then:

S0 ¼

ϕ1V1g1 0 0 0 0 0
0 δ 0 0 0 0

0 0 ϕ2V2g f 2

1

2
ϕ2V2 g1−g f 2

−g1− f 2
� �

0 0

0 0
1

2
ϕ2V2 g1−g f 2

−g1− f 2
� �

ϕ2V2g1− f 2 0 0

0 0 0 0 ϕ3V3 2g f 3
þ g1 þ g1−2 f 3−2g1− f 3

� �
ϕ3V3 g1− f 3−g f 3

−g1−2 f 3
� �

0 0 0 0 ϕ3V3 g1− f 3−g f 3
−g1−2 f 3

� �
ϕ3V3g1−2 f 3

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

ð16Þ

The interaction matrix reads then:

V ¼

vA;A vA;B vA;A vA;B vA;A vA;B
vA;B vB;B vA;B vB;B vA;B vB;B
vA;A vA;B vA;A vA;B vA;A vA;B
vA;B vB;B vA;B vB;B vA;B vB;B
vA;A vA;B vA;A vA;B vA;A vA;B
vA;B vB;B vA;B vB;B vA;B vB;B

0

BBBBBB@

1

CCCCCCA

ð17Þ

The original formula to be calculated, now including the
scattering length densities bA and bB would finally read:

S Qð Þ ¼ bA bB bA bB bA bBð Þ S−1
0 þ V

� �−1

bA
bB
bA
bB
bA
bB

0

BBBBBB@

1

CCCCCCA

ð18Þ
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The calculation in a computer would not face large diffi-
culties. However, the envisaged analytical simplifications

provide a better insight and errors can be found easier. So
the sum of the 2 × 2 correlation matrices reads:

s0;þ ¼
ϕ1V1g1 þ ϕ2V2g f 2

þ ϕ3V3 2g f 3
þ g1 þ g1−2 f 3−2g1− f 3

� � 1

2
ϕ2V2 g1−g f 2

−g1− f 2
� �

þ ϕ3V3 g1− f 3−g f 3
−g1−2 f 3

� �

1

2
ϕ2V2 g1−g f 2

−g1− f 2
� �

þ ϕ3V3 g1− f 3−g f 3
−g1−2 f 3

� �
ϕ2V2g1− f 2 þ ϕ3V3g1−2 f 3

0

B@

1

CA

ð19Þ

and the interaction matrix reads:

v ¼ vA;A vA;B
vA;B vB;B

� �
ð20Þ

So, the general result in terms of a simplified Benoit theory
(Eq. 9) would arrive at:

S Qð Þ ¼ bA bBð Þ s−10;þ þ v
� �−1 bA

bB

� �
ð21Þ

The final scattering formula, assuming incompressibility,
would now read (as in Eq. 14):

S Qð Þ ¼ Δρ2

sum s0;þ
det s0;þ

−2χ
ð22Þ

Note that we callΔρ = bA − bB. As a cross check, we obtain
for the sum of all entries from s0,+ the single chain scattering:

sum s0;þ ¼ ϕ1V1g1 þ ϕ2V2g1 þ ϕ3V3g1 ð23Þ

Please note that the entries for the radii of gyration to the
terms g1(QRg,i) may be different in the three addends. So the
only remaining difficult term is the determinant of s0,+, which
introduces products of correlations.
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