000890789 001__ 890789
000890789 005__ 20230217124407.0
000890789 0247_ $$2doi$$a10.1103/PhysRevE.103.032606
000890789 0247_ $$2ISSN$$a1063-651X
000890789 0247_ $$2ISSN$$a1095-3787
000890789 0247_ $$2ISSN$$a1538-4519
000890789 0247_ $$2ISSN$$a1539-3755
000890789 0247_ $$2ISSN$$a1550-2376
000890789 0247_ $$2ISSN$$a2470-0045
000890789 0247_ $$2ISSN$$a2470-0053
000890789 0247_ $$2ISSN$$a2470-0061
000890789 0247_ $$2Handle$$a2128/27445
000890789 0247_ $$2altmetric$$aaltmetric:102925607
000890789 0247_ $$2pmid$$a33862807
000890789 0247_ $$2WOS$$aWOS:000663143300003
000890789 037__ $$aFZJ-2021-01197
000890789 082__ $$a530
000890789 1001_ $$0P:(DE-Juel1)130749$$aKang, Kyongok$$b0$$eCorresponding author
000890789 245__ $$aSolvent-dependent morphology and anisotropic microscopic dynamics of cellulose nanocrystals under electric fields
000890789 260__ $$aWoodbury, NY$$bInst.$$c2021
000890789 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2021-03-12
000890789 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2021-03-01
000890789 3367_ $$2DRIVER$$aarticle
000890789 3367_ $$2DataCite$$aOutput Types/Journal article
000890789 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1616144698_4230
000890789 3367_ $$2BibTeX$$aARTICLE
000890789 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890789 3367_ $$00$$2EndNote$$aJournal Article
000890789 520__ $$aCellulose nanocrystals (CNCs) are interesting for the construction of biomaterials for energy delivery and packaging purposes. The corresponding processing of CNCs can be optimized through the variation of inter-cellulose interactions by employing different types of solvents, and thereby varying the degree of cellulose hydrogen bonding. The aim of this work is (i) to show how different types of solvents affect the self-assembled morphology of CNCs, (ii) to study the microscopic dynamics and averaged orientations on the CNCs in aqueous suspensions, including the effect of externally imposed electric fields, and (iii) to explore the non-linear optical response of CNCs. The homogeneity of self-assembled chiral-nematic phase depends on both the polarity of the solvent and the CNC concentration. The variation of the chiral-nematic pitch length with concentration, as determined from real-space and Fourier images, is found to be strongly solvent dependent. The anisotropic microdynamics of CNCs suspension exhibits two modes, related to diffusion parallel and perpendicular to the (chiral) nematic director. We have found also the coupling between translational and orientational motion, due to existing correlation length of twisted nematic elasticity. Preliminary second-harmonic generation experiments are performed, which reveal that relatively high field strengths are required to reorient chiral-nematic domains of CNCs.
000890789 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890789 542__ $$2Crossref$$i2021-03-12$$uhttps://creativecommons.org/licenses/by/4.0/
000890789 588__ $$aDataset connected to CrossRef
000890789 7001_ $$00000-0001-9743-6895$$aEremin, Alexey$$b1
000890789 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.103.032606$$bAmerican Physical Society (APS)$$d2021-03-12$$n3$$p032606$$tPhysical Review E$$v103$$x2470-0045$$y2021
000890789 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.103.032606$$gVol. 103, no. 3, p. 032606$$n3$$p032606$$tPhysical review / E$$v103$$x2470-0045$$y2021
000890789 8564_ $$uhttps://juser.fz-juelich.de/record/890789/files/Invoice_INV_21_FEB_005111.pdf
000890789 8564_ $$uhttps://juser.fz-juelich.de/record/890789/files/PhysRevE.103.032606.pdf$$yOpenAccess
000890789 8767_ $$8INV/21/FEB/005111$$92021-02-09$$d2021-03-02$$eHybrid-OA$$jZahlung erfolgt
000890789 909CO $$ooai:juser.fz-juelich.de:890789$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich$$b0$$kFZJ
000890789 9101_ $$0I:(DE-HGF)0$$60000-0001-9743-6895$$aExternal Institute$$b1$$kExtern
000890789 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000890789 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890789 9141_ $$y2021
000890789 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000890789 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890789 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2018$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890789 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000890789 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000890789 920__ $$lyes
000890789 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000890789 980__ $$ajournal
000890789 980__ $$aVDB
000890789 980__ $$aUNRESTRICTED
000890789 980__ $$aI:(DE-Juel1)IBI-4-20200312
000890789 980__ $$aAPC
000890789 9801_ $$aAPC
000890789 9801_ $$aFullTexts
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/2058-7058/14/8/33
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c3tb20193g
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/app9173540
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ma902383k
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acssuschemeng.8b00334
000890789 999C5 $$1P. M. Kosaka$$2Crossref$$9-- missing cx lookup --$$a10.1021/bk-2009-1019.ch010$$p223 -$$tACS. Sym. Ser.$$v1019$$y2009
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0079-6700(01)00027-2
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/am501808h
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsomega.7b00387
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0141-8130(05)80008-X
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcis.2017.02.020
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C7SM02470C
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10570-013-9881-y
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.9b00281
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.langmuir.6b02647
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3589856
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.100.052606
000890789 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C8NA00308D