000890796 001__ 890796
000890796 005__ 20220210164005.0
000890796 0247_ $$2doi$$a10.1111/tpj.15051
000890796 0247_ $$2ISSN$$a0960-7412
000890796 0247_ $$2ISSN$$a1365-313X
000890796 0247_ $$2altmetric$$aaltmetric:96227464
000890796 0247_ $$2pmid$$apmid:33118252
000890796 0247_ $$2WOS$$aWOS:000596452300001
000890796 037__ $$aFZJ-2021-01204
000890796 082__ $$a580
000890796 1001_ $$0P:(DE-HGF)0$$aZhang, Weiyi$$b0
000890796 245__ $$aA phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants
000890796 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2021
000890796 3367_ $$2DRIVER$$aarticle
000890796 3367_ $$2DataCite$$aOutput Types/Journal article
000890796 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643193433_9153
000890796 3367_ $$2BibTeX$$aARTICLE
000890796 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890796 3367_ $$00$$2EndNote$$aJournal Article
000890796 500__ $$aGrant name:031B0779A (TEABAG - Ein pangenomischer Ansatz zur Sicherung der Teeproduktion)031A536C (de.NBI - Etablierungsphase: Leistungszentrum GCBN – Deutsches BioGreenformatics-Netzwerk für Kulturpflanzen).   
000890796 520__ $$aFor diploid organisms that are highly heterozygous, a phased haploid genome can greatly aid in functional genomic, population genetic and breeding studies. Based on the genome sequencing of 135 single sperm cells of the elite tea cultivar ‘Fudingdabai’, we herein phased the genome of Camellia sinensis, one of the most popular beverage crops worldwide. High‐resolution genetic and recombination maps of Fudingdabai were constructed, which revealed that crossover (CO) positions were frequently located in the 5′ and 3′ ends of annotated genes, while CO distributions across the genome were random. The low CO frequency in tea can be explained by strong CO interference, and CO simulation revealed the proportion of interference insensitive CO ranged from 5.2% to 11.7%. We furthermore developed a method to infer the relatedness between tea accessions and detected complex kinship and genetic signatures of 106 tea accessions. Among them, 59 accessions were closely related with Fudingdabai and 31 of them were first‐degree relatives. We additionally identified genes displaying allele specific expression patterns between the two haplotypes of Fudingdabai and genes displaying significantly differential expression levels between Fudingdabai and other haplotypes. These results lay the foundation for further investigation of genetic and epigenetic factors underpinning the regulation of gene expression and provide insights into the evolution of tea plants as well as a valuable genetic resource for future breeding efforts.
000890796 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000890796 588__ $$aDataset connected to CrossRef
000890796 7001_ $$0P:(DE-HGF)0$$aLuo, Cheng$$b1
000890796 7001_ $$0P:(DE-HGF)0$$aScossa, Federico$$b2
000890796 7001_ $$0P:(DE-HGF)0$$aZhang, Qinghua$$b3
000890796 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b4$$eCorresponding author
000890796 7001_ $$00000-0001-9000-335X$$aFernie, Alisdair R.$$b5
000890796 7001_ $$0P:(DE-HGF)0$$aMei, Hanwei$$b6
000890796 7001_ $$00000-0002-3413-4766$$aWen, Weiwei$$b7$$eCorresponding author
000890796 773__ $$0PERI:(DE-600)2020961-7$$a10.1111/tpj.15051$$gVol. 105, no. 1, p. 197 - 208$$n1$$p197 - 208$$tThe plant journal$$v105$$x1365-313X$$y2021
000890796 8564_ $$uhttps://juser.fz-juelich.de/record/890796/files/tpj.15051.pdf$$yRestricted
000890796 909CO $$ooai:juser.fz-juelich.de:890796$$pVDB
000890796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b4$$kFZJ
000890796 9101_ $$0I:(DE-HGF)0$$60000-0001-9000-335X$$aExternal Institute$$b5$$kExtern
000890796 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000890796 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000890796 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890796 9141_ $$y2021
000890796 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-09$$wger
000890796 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT J : 2018$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000890796 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT J : 2018$$d2020-09-09
000890796 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
000890796 980__ $$ajournal
000890796 980__ $$aVDB
000890796 980__ $$aI:(DE-Juel1)IBG-4-20200403
000890796 980__ $$aUNRESTRICTED