001     890796
005     20220210164005.0
024 7 _ |a 10.1111/tpj.15051
|2 doi
024 7 _ |a 0960-7412
|2 ISSN
024 7 _ |a 1365-313X
|2 ISSN
024 7 _ |a altmetric:96227464
|2 altmetric
024 7 _ |a pmid:33118252
|2 pmid
024 7 _ |a WOS:000596452300001
|2 WOS
037 _ _ |a FZJ-2021-01204
082 _ _ |a 580
100 1 _ |a Zhang, Weiyi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants
260 _ _ |a Oxford [u.a.]
|c 2021
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643193433_9153
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Grant name:031B0779A (TEABAG - Ein pangenomischer Ansatz zur Sicherung der Teeproduktion)031A536C (de.NBI - Etablierungsphase: Leistungszentrum GCBN – Deutsches BioGreenformatics-Netzwerk für Kulturpflanzen).
520 _ _ |a For diploid organisms that are highly heterozygous, a phased haploid genome can greatly aid in functional genomic, population genetic and breeding studies. Based on the genome sequencing of 135 single sperm cells of the elite tea cultivar ‘Fudingdabai’, we herein phased the genome of Camellia sinensis, one of the most popular beverage crops worldwide. High‐resolution genetic and recombination maps of Fudingdabai were constructed, which revealed that crossover (CO) positions were frequently located in the 5′ and 3′ ends of annotated genes, while CO distributions across the genome were random. The low CO frequency in tea can be explained by strong CO interference, and CO simulation revealed the proportion of interference insensitive CO ranged from 5.2% to 11.7%. We furthermore developed a method to infer the relatedness between tea accessions and detected complex kinship and genetic signatures of 106 tea accessions. Among them, 59 accessions were closely related with Fudingdabai and 31 of them were first‐degree relatives. We additionally identified genes displaying allele specific expression patterns between the two haplotypes of Fudingdabai and genes displaying significantly differential expression levels between Fudingdabai and other haplotypes. These results lay the foundation for further investigation of genetic and epigenetic factors underpinning the regulation of gene expression and provide insights into the evolution of tea plants as well as a valuable genetic resource for future breeding efforts.
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Luo, Cheng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Scossa, Federico
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Qinghua
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 4
|e Corresponding author
700 1 _ |a Fernie, Alisdair R.
|0 0000-0001-9000-335X
|b 5
700 1 _ |a Mei, Hanwei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wen, Weiwei
|0 0000-0002-3413-4766
|b 7
|e Corresponding author
773 _ _ |a 10.1111/tpj.15051
|g Vol. 105, no. 1, p. 197 - 208
|0 PERI:(DE-600)2020961-7
|n 1
|p 197 - 208
|t The plant journal
|v 105
|y 2021
|x 1365-313X
856 4 _ |u https://juser.fz-juelich.de/record/890796/files/tpj.15051.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:890796
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145719
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0001-9000-335X
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT J : 2018
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT J : 2018
|d 2020-09-09
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21