000890797 001__ 890797
000890797 005__ 20210623131803.0
000890797 0247_ $$2doi$$a10.1371/journal.pone.0247408
000890797 0247_ $$2Handle$$a2128/27270
000890797 0247_ $$2pmid$$a33630915
000890797 0247_ $$2WOS$$aWOS:000624536800094
000890797 037__ $$aFZJ-2021-01205
000890797 082__ $$a610
000890797 1001_ $$0P:(DE-Juel1)141935$$aRosenberg, Jessica$$b0
000890797 245__ $$aConflict processing networks: A directional analysis of stimulus-response compatibilities using MEG
000890797 260__ $$aSan Francisco, California, US$$bPLOS$$c2021
000890797 3367_ $$2DRIVER$$aarticle
000890797 3367_ $$2DataCite$$aOutput Types/Journal article
000890797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614609727_11411
000890797 3367_ $$2BibTeX$$aARTICLE
000890797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890797 3367_ $$00$$2EndNote$$aJournal Article
000890797 520__ $$aThe suppression of distracting information in order to focus on an actual cognitive goal is a key feature of executive functions. The use of brain imaging methods to investigate the underlying neurobiological brain activations that occur during conflict processing have demonstrated a strong involvement of the fronto-parietal attention network (FPAN). Surprisingly, the directional interconnections, their time courses and activations at different frequency bands remain to be elucidated, and thus, this constitutes the focus of this study. The shared information flow between brain areas of the FPAN is provided for frequency bands ranging from the theta to the lower gamma band (4–40 Hz). We employed an adaptation of the Simon task utilizing Magnetoencephalography (MEG). Granger causality was applied to investigate interconnections between the active brain regions, as well as their directionality. Following stimulus onset, the middle frontal precentral cortex and superior parietal cortex were significantly activated during conflict processing in a time window of between 300 to 600ms. Important differences in causality were found across frequency bands between processing of conflicting stimuli in the left as compared to the right visual hemifield. The exchange of information from and to the FPAN was most prominent in the beta band. Moreover, the anterior cingulate cortex and the anterior insula represented key areas for conflict monitoring, either by receiving input from other areas of the FPAN or by generating output themselves. This indicates that the salience network is at least partly involved in processing conflict information. The present study provides detailed insights into the underlying neural mechanisms of the FPAN, especially regarding its temporal characteristics and directional interconnections.
000890797 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000890797 588__ $$aDataset connected to CrossRef
000890797 7001_ $$0P:(DE-HGF)0$$aDong, Qunxi$$b1
000890797 7001_ $$0P:(DE-HGF)0$$aFlorin, Esther$$b2
000890797 7001_ $$0P:(DE-Juel1)165677$$aSripad, Praveen$$b3
000890797 7001_ $$0P:(DE-Juel1)131752$$aBoers, Frank$$b4$$ufzj
000890797 7001_ $$0P:(DE-Juel1)140116$$aReske, Martina$$b5
000890797 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b6$$ufzj
000890797 7001_ $$0P:(DE-Juel1)131757$$aDammers, Jürgen$$b7$$eCorresponding author
000890797 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0247408$$gVol. 16, no. 2, p. e0247408 -$$n2$$pe0247408 -$$tPLOS ONE$$v16$$x1932-6203$$y2021
000890797 8564_ $$uhttps://juser.fz-juelich.de/record/890797/files/journal.pone.0247408.pdf$$yOpenAccess
000890797 909CO $$ooai:juser.fz-juelich.de:890797$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890797 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)141935$$a INM-4$$b0
000890797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165677$$aForschungszentrum Jülich$$b3$$kFZJ
000890797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131752$$aForschungszentrum Jülich$$b4$$kFZJ
000890797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140116$$aForschungszentrum Jülich$$b5$$kFZJ
000890797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
000890797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131757$$aForschungszentrum Jülich$$b7$$kFZJ
000890797 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000890797 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000890797 9141_ $$y2021
000890797 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2018$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-32
000890797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000890797 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000890797 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000890797 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000890797 980__ $$ajournal
000890797 980__ $$aVDB
000890797 980__ $$aUNRESTRICTED
000890797 980__ $$aI:(DE-Juel1)INM-4-20090406
000890797 980__ $$aI:(DE-Juel1)INM-11-20170113
000890797 980__ $$aI:(DE-Juel1)VDB1046
000890797 9801_ $$aFullTexts