000890801 001__ 890801
000890801 005__ 20210623131755.0
000890801 0247_ $$2doi$$a10.1093/jxb/eraa553
000890801 0247_ $$2ISSN$$a0022-0957
000890801 0247_ $$2ISSN$$a1460-2431
000890801 0247_ $$2Handle$$a2128/27267
000890801 0247_ $$2altmetric$$aaltmetric:101599267
000890801 0247_ $$2pmid$$a33247939
000890801 0247_ $$2WOS$$aWOS:000637289800012
000890801 037__ $$aFZJ-2021-01209
000890801 082__ $$a580
000890801 1001_ $$00000-0003-3796-8587$$aDi Vittori, Valerio$$b0
000890801 245__ $$aPod indehiscence in common bean is associated with the fine regulation of PvMYB26
000890801 260__ $$aOxford$$bOxford Univ. Press$$c2021
000890801 3367_ $$2DRIVER$$aarticle
000890801 3367_ $$2DataCite$$aOutput Types/Journal article
000890801 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615796042_20339
000890801 3367_ $$2BibTeX$$aARTICLE
000890801 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890801 3367_ $$00$$2EndNote$$aJournal Article
000890801 520__ $$aIn legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5 kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated with the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci.In legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5 kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated with the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci.
000890801 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000890801 588__ $$aDataset connected to CrossRef
000890801 7001_ $$0P:(DE-HGF)0$$aBitocchi, Elena$$b1
000890801 7001_ $$0P:(DE-HGF)0$$aRodriguez, Monica$$b2
000890801 7001_ $$0P:(DE-HGF)0$$aAlseekh, Saleh$$b3
000890801 7001_ $$0P:(DE-HGF)0$$aBellucci, Elisa$$b4
000890801 7001_ $$0P:(DE-HGF)0$$aNanni, Laura$$b5
000890801 7001_ $$0P:(DE-Juel1)161599$$aGioia, Tania$$b6
000890801 7001_ $$0P:(DE-HGF)0$$aMarzario, Stefania$$b7
000890801 7001_ $$0P:(DE-HGF)0$$aLogozzo, Giuseppina$$b8
000890801 7001_ $$0P:(DE-HGF)0$$aRossato, Marzia$$b9
000890801 7001_ $$0P:(DE-HGF)0$$aDe Quattro, Concetta$$b10
000890801 7001_ $$0P:(DE-HGF)0$$aMurgia, Maria L$$b11
000890801 7001_ $$0P:(DE-HGF)0$$aFerreira, Juan José$$b12
000890801 7001_ $$0P:(DE-HGF)0$$aCampa, Ana$$b13
000890801 7001_ $$0P:(DE-HGF)0$$aXu, Chunming$$b14
000890801 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b15
000890801 7001_ $$0P:(DE-HGF)0$$aSampathkumar, Arun$$b16
000890801 7001_ $$0P:(DE-HGF)0$$aFröhlich, Anja$$b17
000890801 7001_ $$0P:(DE-HGF)0$$aAttene, Giovanna$$b18
000890801 7001_ $$0P:(DE-HGF)0$$aDelledonne, Massimo$$b19
000890801 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b20
000890801 7001_ $$0P:(DE-HGF)0$$aFernie, Alisdair R$$b21
000890801 7001_ $$0P:(DE-HGF)0$$aRau, Domenico$$b22
000890801 7001_ $$0P:(DE-Juel1)165697$$aPapa, Roberto$$b23$$eCorresponding author
000890801 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/eraa553$$gp. eraa553$$n5$$p1617–1633$$tThe journal of experimental botany$$v72$$x1460-2431$$y2021
000890801 8564_ $$uhttps://juser.fz-juelich.de/record/890801/files/eraa553.pdf$$yOpenAccess
000890801 909CO $$ooai:juser.fz-juelich.de:890801$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890801 9101_ $$0I:(DE-HGF)0$$60000-0003-3796-8587$$aExternal Institute$$b0$$kExtern
000890801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b15$$kFZJ
000890801 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b20$$kFZJ
000890801 9130_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000890801 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000890801 9141_ $$y2021
000890801 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EXP BOT : 2018$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EXP BOT : 2018$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-31
000890801 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890801 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890801 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-08-31$$wger
000890801 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-31
000890801 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-31$$wger
000890801 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-31
000890801 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
000890801 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000890801 980__ $$ajournal
000890801 980__ $$aVDB
000890801 980__ $$aI:(DE-Juel1)IBG-4-20200403
000890801 980__ $$aI:(DE-Juel1)IBG-2-20101118
000890801 980__ $$aUNRESTRICTED
000890801 9801_ $$aFullTexts