001     890801
005     20210623131755.0
024 7 _ |a 10.1093/jxb/eraa553
|2 doi
024 7 _ |a 0022-0957
|2 ISSN
024 7 _ |a 1460-2431
|2 ISSN
024 7 _ |a 2128/27267
|2 Handle
024 7 _ |a altmetric:101599267
|2 altmetric
024 7 _ |a 33247939
|2 pmid
024 7 _ |a WOS:000637289800012
|2 WOS
037 _ _ |a FZJ-2021-01209
082 _ _ |a 580
100 1 _ |a Di Vittori, Valerio
|0 0000-0003-3796-8587
|b 0
245 _ _ |a Pod indehiscence in common bean is associated with the fine regulation of PvMYB26
260 _ _ |a Oxford
|c 2021
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615796042_20339
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5 kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated with the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci.In legumes, pod shattering occurs when mature pods dehisce along the sutures, and detachment of the valves promotes seed dispersal. In Phaseolus vulgaris (L)., the major locus qPD5.1-Pv for pod indehiscence was identified recently. We developed a BC4/F4 introgression line population and narrowed the major locus down to a 22.5 kb region. Here, gene expression and a parallel histological analysis of dehiscent and indehiscent pods identified an AtMYB26 orthologue as the best candidate for loss of pod shattering, on a genomic region ~11 kb downstream of the highest associated peak. Based on mapping and expression data, we propose early and fine up-regulation of PvMYB26 in dehiscent pods. Detailed histological analysis establishes that pod indehiscence is associated with the lack of a functional abscission layer in the ventral sheath, and that the key anatomical modifications associated with pod shattering in common bean occur early during pod development. We finally propose that loss of pod shattering in legumes resulted from histological convergent evolution and that it is the result of selection at orthologous loci.
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bitocchi, Elena
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rodriguez, Monica
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Alseekh, Saleh
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bellucci, Elisa
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nanni, Laura
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gioia, Tania
|0 P:(DE-Juel1)161599
|b 6
700 1 _ |a Marzario, Stefania
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Logozzo, Giuseppina
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rossato, Marzia
|0 P:(DE-HGF)0
|b 9
700 1 _ |a De Quattro, Concetta
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Murgia, Maria L
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ferreira, Juan José
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Campa, Ana
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Xu, Chunming
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Fiorani, Fabio
|0 P:(DE-Juel1)143649
|b 15
700 1 _ |a Sampathkumar, Arun
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Fröhlich, Anja
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Attene, Giovanna
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Delledonne, Massimo
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 20
700 1 _ |a Fernie, Alisdair R
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Rau, Domenico
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Papa, Roberto
|0 P:(DE-Juel1)165697
|b 23
|e Corresponding author
773 _ _ |a 10.1093/jxb/eraa553
|g p. eraa553
|0 PERI:(DE-600)1466717-4
|n 5
|p 1617–1633
|t The journal of experimental botany
|v 72
|y 2021
|x 1460-2431
856 4 _ |u https://juser.fz-juelich.de/record/890801/files/eraa553.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890801
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0003-3796-8587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)143649
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)145719
913 0 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EXP BOT : 2018
|d 2020-08-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J EXP BOT : 2018
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-31
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-08-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21