Hauptseite > Publikationsdatenbank > Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex > print |
001 | 890803 | ||
005 | 20230111074330.0 | ||
024 | 7 | _ | |a 10.1016/j.molp.2020.04.004 |2 doi |
024 | 7 | _ | |a 1674-2052 |2 ISSN |
024 | 7 | _ | |a 1752-9859 |2 ISSN |
024 | 7 | _ | |a 1752-9867 |2 ISSN |
024 | 7 | _ | |a 2128/27275 |2 Handle |
024 | 7 | _ | |a altmetric:79980298 |2 altmetric |
024 | 7 | _ | |a 32305499 |2 pmid |
024 | 7 | _ | |a WOS:000547375600012 |2 WOS |
037 | _ | _ | |a FZJ-2021-01211 |
082 | _ | _ | |a 580 |
100 | 1 | _ | |a Tohge, Takayuki |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex |
260 | _ | _ | |a Oxford |c 2020 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1614611624_9773 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC–MS- and LC–MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Scossa, Federico |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wendenburg, Regina |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Frasse, Pierre |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Balbo, Ilse |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Watanabe, Mutsumi |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Alseekh, Saleh |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Jadhav, Sagar Sudam |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Delfin, Jay C. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Lohse, Marc |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Giavalisco, Patrick |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Usadel, Björn |0 P:(DE-Juel1)145719 |b 11 |u fzj |
700 | 1 | _ | |a Zhang, Youjun |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Luo, Jie |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Bouzayen, Mondher |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Fernie, Alisdair R. |0 P:(DE-HGF)0 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.molp.2020.04.004 |g Vol. 13, no. 7, p. 1027 - 1046 |0 PERI:(DE-600)2393618-6 |n 7 |p 1027 - 1046 |t Molecular plant |v 13 |y 2020 |x 1674-2052 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890803/files/1-s2.0-S1674205220301052-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:890803 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)145719 |
913 | 0 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2020-08-32 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b MOL PLANT : 2018 |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-08-32 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-32 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-32 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOL PLANT : 2018 |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-08-32 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-32 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-32 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-4-20200403 |k IBG-4 |l Bioinformatik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-4-20200403 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|