001     890803
005     20230111074330.0
024 7 _ |a 10.1016/j.molp.2020.04.004
|2 doi
024 7 _ |a 1674-2052
|2 ISSN
024 7 _ |a 1752-9859
|2 ISSN
024 7 _ |a 1752-9867
|2 ISSN
024 7 _ |a 2128/27275
|2 Handle
024 7 _ |a altmetric:79980298
|2 altmetric
024 7 _ |a 32305499
|2 pmid
024 7 _ |a WOS:000547375600012
|2 WOS
037 _ _ |a FZJ-2021-01211
082 _ _ |a 580
100 1 _ |a Tohge, Takayuki
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex
260 _ _ |a Oxford
|c 2020
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614611624_9773
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC–MS- and LC–MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Scossa, Federico
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wendenburg, Regina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Frasse, Pierre
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Balbo, Ilse
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Watanabe, Mutsumi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Alseekh, Saleh
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jadhav, Sagar Sudam
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Delfin, Jay C.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lohse, Marc
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Giavalisco, Patrick
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 11
|u fzj
700 1 _ |a Zhang, Youjun
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Luo, Jie
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Bouzayen, Mondher
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Fernie, Alisdair R.
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
773 _ _ |a 10.1016/j.molp.2020.04.004
|g Vol. 13, no. 7, p. 1027 - 1046
|0 PERI:(DE-600)2393618-6
|n 7
|p 1027 - 1046
|t Molecular plant
|v 13
|y 2020
|x 1674-2052
856 4 _ |u https://juser.fz-juelich.de/record/890803/files/1-s2.0-S1674205220301052-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890803
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)145719
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-32
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b MOL PLANT : 2018
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-32
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL PLANT : 2018
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-32
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-32
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21