000890804 001__ 890804
000890804 005__ 20230418141949.0
000890804 0247_ $$2doi$$a10.1007/s00424-021-02520-7
000890804 0247_ $$2ISSN$$a0031-6768
000890804 0247_ $$2ISSN$$a0365-267X
000890804 0247_ $$2ISSN$$a1432-2013
000890804 0247_ $$2Handle$$a2128/27748
000890804 0247_ $$2altmetric$$aaltmetric:100321733
000890804 0247_ $$2pmid$$a33576851
000890804 0247_ $$2WOS$$aWOS:000617490400001
000890804 037__ $$aFZJ-2021-01212
000890804 082__ $$a590
000890804 1001_ $$0P:(DE-Juel1)145386$$aJockwitz, Christiane$$b0$$eCorresponding author$$ufzj
000890804 245__ $$aResting-state networks in the course of aging—differential insights from studies across the lifespan vs. amongst the old
000890804 260__ $$aHeidelberg$$bSpringer$$c2021
000890804 3367_ $$2DRIVER$$aarticle
000890804 3367_ $$2DataCite$$aOutput Types/Journal article
000890804 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620302540_24836
000890804 3367_ $$2BibTeX$$aARTICLE
000890804 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890804 3367_ $$00$$2EndNote$$aJournal Article
000890804 520__ $$aResting-state functional connectivity (RSFC) has widely been used to examine reorganization of functional brain networks during normal aging. The extraction of generalizable age trends, however, is hampered by differences in methodological approaches, study designs and sample characteristics. Distinct age ranges of study samples thereby represent an important aspect between studies especially due to the increase in inter-individual variability over the lifespan. The current review focuses on comparing age-related differences in RSFC in the course of the whole adult lifespan versus later decades of life. We summarize and compare studies assessing age-related differences in within- and between-network RSFC of major resting-state brain networks. Differential effects of the factor age on resting-state networks can be identified when comparing studies focusing on younger versus older adults with studies investigating effects within the older adult population. These differential effects pertain to higher order and primary processing resting-state networks to a varying extent. Especially during later decades of life, other factors beyond age might come into play to understand the high inter-individual variability in RSFC.
000890804 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000890804 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x1
000890804 588__ $$aDataset connected to CrossRef
000890804 7001_ $$0P:(DE-Juel1)131675$$aCaspers, S.$$b1$$ufzj
000890804 773__ $$0PERI:(DE-600)1463014-x$$a10.1007/s00424-021-02520-7$$p793–803$$tPflügers Archiv$$v473$$x1432-2013$$y2021
000890804 8564_ $$uhttps://juser.fz-juelich.de/record/890804/files/Jockwitz-Caspers2021_Article_Resting-stateNetworksInTheCour.pdf$$yOpenAccess
000890804 8767_ $$d2021-02-12$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000890804 909CO $$ooai:juser.fz-juelich.de:890804$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000890804 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145386$$aForschungszentrum Jülich$$b0$$kFZJ
000890804 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b1$$kFZJ
000890804 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000890804 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000890804 9141_ $$y2021
000890804 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890804 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPFLUG ARCH EUR J PHY : 2018$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-10-13$$wger
000890804 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000890804 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000890804 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890804 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-10-13$$wger
000890804 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000890804 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000890804 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000890804 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000890804 9801_ $$aFullTexts
000890804 980__ $$ajournal
000890804 980__ $$aVDB
000890804 980__ $$aUNRESTRICTED
000890804 980__ $$aI:(DE-Juel1)INM-1-20090406
000890804 980__ $$aAPC