001     890804
005     20230418141949.0
024 7 _ |a 10.1007/s00424-021-02520-7
|2 doi
024 7 _ |a 0031-6768
|2 ISSN
024 7 _ |a 0365-267X
|2 ISSN
024 7 _ |a 1432-2013
|2 ISSN
024 7 _ |a 2128/27748
|2 Handle
024 7 _ |a altmetric:100321733
|2 altmetric
024 7 _ |a 33576851
|2 pmid
024 7 _ |a WOS:000617490400001
|2 WOS
037 _ _ |a FZJ-2021-01212
082 _ _ |a 590
100 1 _ |a Jockwitz, Christiane
|0 P:(DE-Juel1)145386
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Resting-state networks in the course of aging—differential insights from studies across the lifespan vs. amongst the old
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1620302540_24836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resting-state functional connectivity (RSFC) has widely been used to examine reorganization of functional brain networks during normal aging. The extraction of generalizable age trends, however, is hampered by differences in methodological approaches, study designs and sample characteristics. Distinct age ranges of study samples thereby represent an important aspect between studies especially due to the increase in inter-individual variability over the lifespan. The current review focuses on comparing age-related differences in RSFC in the course of the whole adult lifespan versus later decades of life. We summarize and compare studies assessing age-related differences in within- and between-network RSFC of major resting-state brain networks. Differential effects of the factor age on resting-state networks can be identified when comparing studies focusing on younger versus older adults with studies investigating effects within the older adult population. These differential effects pertain to higher order and primary processing resting-state networks to a varying extent. Especially during later decades of life, other factors beyond age might come into play to understand the high inter-individual variability in RSFC.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|x 0
|f POF IV
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Caspers, S.
|0 P:(DE-Juel1)131675
|b 1
|u fzj
773 _ _ |a 10.1007/s00424-021-02520-7
|0 PERI:(DE-600)1463014-x
|p 793–803
|t Pflügers Archiv
|v 473
|y 2021
|x 1432-2013
856 4 _ |u https://juser.fz-juelich.de/record/890804/files/Jockwitz-Caspers2021_Article_Resting-stateNetworksInTheCour.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890804
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145386
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131675
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PFLUG ARCH EUR J PHY : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-10-13
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-10-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-10-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21