Home > Publications database > Resting-state networks in the course of aging—differential insights from studies across the lifespan vs. amongst the old > print |
001 | 890804 | ||
005 | 20230418141949.0 | ||
024 | 7 | _ | |a 10.1007/s00424-021-02520-7 |2 doi |
024 | 7 | _ | |a 0031-6768 |2 ISSN |
024 | 7 | _ | |a 0365-267X |2 ISSN |
024 | 7 | _ | |a 1432-2013 |2 ISSN |
024 | 7 | _ | |a 2128/27748 |2 Handle |
024 | 7 | _ | |a altmetric:100321733 |2 altmetric |
024 | 7 | _ | |a 33576851 |2 pmid |
024 | 7 | _ | |a WOS:000617490400001 |2 WOS |
037 | _ | _ | |a FZJ-2021-01212 |
082 | _ | _ | |a 590 |
100 | 1 | _ | |a Jockwitz, Christiane |0 P:(DE-Juel1)145386 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Resting-state networks in the course of aging—differential insights from studies across the lifespan vs. amongst the old |
260 | _ | _ | |a Heidelberg |c 2021 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1620302540_24836 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Resting-state functional connectivity (RSFC) has widely been used to examine reorganization of functional brain networks during normal aging. The extraction of generalizable age trends, however, is hampered by differences in methodological approaches, study designs and sample characteristics. Distinct age ranges of study samples thereby represent an important aspect between studies especially due to the increase in inter-individual variability over the lifespan. The current review focuses on comparing age-related differences in RSFC in the course of the whole adult lifespan versus later decades of life. We summarize and compare studies assessing age-related differences in within- and between-network RSFC of major resting-state brain networks. Differential effects of the factor age on resting-state networks can be identified when comparing studies focusing on younger versus older adults with studies investigating effects within the older adult population. These differential effects pertain to higher order and primary processing resting-state networks to a varying extent. Especially during later decades of life, other factors beyond age might come into play to understand the high inter-individual variability in RSFC. |
536 | _ | _ | |a 525 - Decoding Brain Organization and Dysfunction (POF4-525) |0 G:(DE-HGF)POF4-525 |c POF4-525 |x 0 |f POF IV |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Caspers, S. |0 P:(DE-Juel1)131675 |b 1 |u fzj |
773 | _ | _ | |a 10.1007/s00424-021-02520-7 |0 PERI:(DE-600)1463014-x |p 793–803 |t PfluÌgers Archiv |v 473 |y 2021 |x 1432-2013 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890804/files/Jockwitz-Caspers2021_Article_Resting-stateNetworksInTheCour.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:890804 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145386 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131675 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Connectivity and Activity |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-10-13 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PFLUG ARCH EUR J PHY : 2018 |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-10-13 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2020-10-13 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-10-13 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-10-13 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-10-13 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-10-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-10-13 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-10-13 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-10-13 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|