001     890805
005     20240625095123.0
024 7 _ |a 10.1002/acn3.51315
|2 doi
024 7 _ |a 2128/27752
|2 Handle
024 7 _ |a altmetric:102099859
|2 altmetric
024 7 _ |a 33739604
|2 pmid
024 7 _ |a WOS:000631659200001
|2 WOS
037 _ _ |a FZJ-2021-01213
082 _ _ |a 610
100 1 _ |a Schmitz-Hübsch, T.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Spinocerebellar ataxia type 14: Refining clinico-genetic diagnosis in a rare adult-onset disorder
260 _ _ |a Chichester [u.a.]
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1620303806_24839
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ObjectivesGenetic variant classification is a challenge in rare adult‐onset disorders as in SCA‐PRKCG (prior spinocerebellar ataxia type 14) with mostly private conventional mutations and nonspecific phenotype. We here propose a refined approach for clinicogenetic diagnosis by including protein modeling and provide for confirmed SCA‐PRKCG a comprehensive phenotype description from a German multi‐center cohort, including standardized 3D MR imaging.MethodsThis cross‐sectional study prospectively obtained neurological, neuropsychological, and brain imaging data in 33 PRKCG variant carriers. Protein modeling was added as a classification criterion in variants of uncertain significance (VUS).ResultsOur sample included 25 cases confirmed as SCA‐PRKCG (14 variants, thereof seven novel variants) and eight carriers of variants assigned as VUS (four variants) or benign/likely benign (two variants). Phenotype in SCA‐PRKCG included slowly progressive ataxia (onset at 4–50 years), preceded in some by early‐onset nonprogressive symptoms. Ataxia was often combined with action myoclonus, dystonia, or mild cognitive‐affective disturbance. Inspection of brain MRI revealed nonprogressive cerebellar atrophy. As a novel finding, a previously not described T2 hyperintense dentate nucleus was seen in all SCA‐PRKCG cases but in none of the controls.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lux, Silke
|0 P:(DE-Juel1)131733
|b 1
700 1 _ |a Bauer, P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brandt, A. U.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schlapakow, E.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Greschus, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Scheel, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gärtner, Hanna
|0 P:(DE-Juel1)172076
|b 7
700 1 _ |a Kirlangic, Mehmet Eylem
|0 P:(DE-Juel1)131652
|b 8
700 1 _ |a Gras, Vincent
|0 P:(DE-Juel1)131765
|b 9
700 1 _ |a Timmann, D.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Synofzik, M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Giorgetti, Alejandro
|0 P:(DE-Juel1)165199
|b 12
|u fzj
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 13
|u fzj
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 14
|u fzj
700 1 _ |a Schöls, L.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Kopp, U.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Bußenius, L.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Oberwahrenbrock, T.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Zimmermann, H.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Pfueller, C.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Kadas, E. M.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Rönnefarth, M.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Grosch, A. S.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Endres, M.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 25
|u fzj
700 1 _ |a Friedemann, P.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Doss, S.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Minnerop, Martina
|0 P:(DE-Juel1)131622
|b 28
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/acn3.51315
|g p. acn3.51315
|0 PERI:(DE-600)2740696-9
|n 4
|p 774-789
|t Annals of Clinical and Translational Neurology
|v 8
|y 2021
|x 2328-9503
856 4 _ |u https://juser.fz-juelich.de/record/890805/files/acn3.51315.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890805
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)165199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)145614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 28
|6 P:(DE-Juel1)131622
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-06
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN CLIN TRANSL NEUR : 2018
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 2
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 3
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 4
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21