000890807 001__ 890807
000890807 005__ 20230123101900.0
000890807 0247_ $$2doi$$a10.1088/1402-4896/abe77f
000890807 0247_ $$2ISSN$$a0031-8949
000890807 0247_ $$2ISSN$$a1402-4896
000890807 0247_ $$2Handle$$a2128/30691
000890807 0247_ $$2altmetric$$aaltmetric:102946713
000890807 0247_ $$2WOS$$aWOS:000627292700001
000890807 037__ $$aFZJ-2021-01215
000890807 082__ $$a530
000890807 1001_ $$0P:(DE-Juel1)151301$$aDi Lucchio, Laura$$b0
000890807 245__ $$aPost-acceleration of electron bunches from laser-irradiated nanoclusters
000890807 260__ $$aStockholm$$bThe Royal Swedish Academy of Sciences$$c2021
000890807 3367_ $$2DRIVER$$aarticle
000890807 3367_ $$2DataCite$$aOutput Types/Journal article
000890807 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669034984_14874
000890807 3367_ $$2BibTeX$$aARTICLE
000890807 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890807 3367_ $$00$$2EndNote$$aJournal Article
000890807 520__ $$aIn this paper the energy gain of attosecond electron bunches emitted during the interaction of intense, few-cycle linearly polarized lasers with nanoscale spherical clusters is determined. In this case electron bunches are emitted from the rear side of the cluster and are then further accelerated while co-propagating with the laser. A previous study has shown how this two-stage process readily occurs for clusters whose radii lie between the relativistic skin depth, δr = γ1/2c/ωp, and the laser spot size σL (Di Lucchio & Gibbon, Phys. Rev. STAB 18, 2015). An analytical model for focused light waves interacting with compact, overdense electron bunches in vacuum is derived heuristically from world-line equations of motion of an electron. The functional integral approach is followed under the mathematical point of view of integration with respect to a stochastic variable. The resulting picture of the laser wave crossing the electron's trajectory leads to a finite energy gain of the electron in light–matter interaction in vacuum. The analytical theory is compared with three-dimensional PIC simulations from which trajectories of the electron bunches can be extracted. The effective increase in bunch energy is determined under realistic conditions both for the peak (mode) and the cutoff energy of the emitted bunch, in order to make quantitative comparisons with theory and the experimental findings of Cardenas et al , Nature Sci. Reports 9 (2019).
000890807 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000890807 588__ $$aDataset connected to CrossRef
000890807 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b1$$eCorresponding author
000890807 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/abe77f$$p055603$$tPhysica scripta$$v96$$x1402-4896$$y2021
000890807 8564_ $$uhttps://juser.fz-juelich.de/record/890807/files/Lucchio_2021_Phys._Scr._96_055603.pdf$$yOpenAccess
000890807 8767_ $$d2021-04-19$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP
000890807 909CO $$ooai:juser.fz-juelich.de:890807$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890807 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b1$$kFZJ
000890807 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000890807 9132_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000890807 9141_ $$y2022
000890807 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-12
000890807 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-12
000890807 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890807 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-12
000890807 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-12
000890807 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890807 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-10-12$$wger
000890807 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-12
000890807 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-12
000890807 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-10-12$$wger
000890807 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-12
000890807 920__ $$lyes
000890807 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000890807 980__ $$ajournal
000890807 980__ $$aVDB
000890807 980__ $$aI:(DE-Juel1)JSC-20090406
000890807 980__ $$aAPC
000890807 980__ $$aUNRESTRICTED
000890807 9801_ $$aAPC
000890807 9801_ $$aFullTexts