001     890807
005     20230123101900.0
024 7 _ |a 10.1088/1402-4896/abe77f
|2 doi
024 7 _ |a 0031-8949
|2 ISSN
024 7 _ |a 1402-4896
|2 ISSN
024 7 _ |a 2128/30691
|2 Handle
024 7 _ |a altmetric:102946713
|2 altmetric
024 7 _ |a WOS:000627292700001
|2 WOS
037 _ _ |a FZJ-2021-01215
082 _ _ |a 530
100 1 _ |a Di Lucchio, Laura
|0 P:(DE-Juel1)151301
|b 0
245 _ _ |a Post-acceleration of electron bunches from laser-irradiated nanoclusters
260 _ _ |a Stockholm
|c 2021
|b The Royal Swedish Academy of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669034984_14874
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper the energy gain of attosecond electron bunches emitted during the interaction of intense, few-cycle linearly polarized lasers with nanoscale spherical clusters is determined. In this case electron bunches are emitted from the rear side of the cluster and are then further accelerated while co-propagating with the laser. A previous study has shown how this two-stage process readily occurs for clusters whose radii lie between the relativistic skin depth, δr = γ1/2c/ωp, and the laser spot size σL (Di Lucchio & Gibbon, Phys. Rev. STAB 18, 2015). An analytical model for focused light waves interacting with compact, overdense electron bunches in vacuum is derived heuristically from world-line equations of motion of an electron. The functional integral approach is followed under the mathematical point of view of integration with respect to a stochastic variable. The resulting picture of the laser wave crossing the electron's trajectory leads to a finite energy gain of the electron in light–matter interaction in vacuum. The analytical theory is compared with three-dimensional PIC simulations from which trajectories of the electron bunches can be extracted. The effective increase in bunch energy is determined under realistic conditions both for the peak (mode) and the cutoff energy of the emitted bunch, in order to make quantitative comparisons with theory and the experimental findings of Cardenas et al , Nature Sci. Reports 9 (2019).
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gibbon, Paul
|0 P:(DE-Juel1)132115
|b 1
|e Corresponding author
773 _ _ |a 10.1088/1402-4896/abe77f
|0 PERI:(DE-600)1477351-x
|p 055603
|t Physica scripta
|v 96
|y 2021
|x 1402-4896
856 4 _ |u https://juser.fz-juelich.de/record/890807/files/Lucchio_2021_Phys._Scr._96_055603.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890807
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132115
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-10-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-10-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21