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Abstract
In this paper the energy gain of attosecond electron bunches emittedduring the interactionof intense,
few-cycle linearly polarized laserswithnanoscale spherical clusters is determined. In this case electron
bunches are emitted from the rear sideof the cluster andare then further acceleratedwhile co-propagating
with the laser. Aprevious studyhas shownhow this two-stage process readily occurs for clusterswhose
radii lie between the relativistic skin depth, δr= γ1/2c/ωp, and the laser spot sizeσL (DiLucchio&Gibbon,
Phys. Rev. STAB18, 2015). An analyticalmodel for focused lightwaves interactingwith compact,
overdense electronbunches in vacuum is derivedheuristically fromworld-line equations ofmotionof an
electron.The functional integral approach is followedunder themathematical point of viewof integration
with respect to a stochastic variable. The resultingpicture of the laserwave crossing the electron’s
trajectory leads to afinite energy gain of the electron in light–matter interaction in vacuum.The analytical
theory is comparedwith three-dimensional PIC simulations fromwhich trajectories of the electron
bunches canbe extracted. The effective increase in bunch energy is determinedunder realistic conditions
both for the peak (mode) and the cutoff energy of the emitted bunch, in order tomake quantitative
comparisonswith theory and the experimentalfindings ofCardenas et al ,Nature Sci. Reports 9 (2019).

1. Introduction: direct laser acceleration of electrons in free space

The physics of laser acceleration of single electrons in vacuumhas beenwidely studied, and despite the Lawson-
Woodward theorem seemingly excluding useful electron energy gain due to phase slippage between the electron
and the longitudinal electric field in the linear, non-relativistic regime, it is nowwell established that significant
acceleration is possible due to nonlinear processes at highly relativistic intensities [1–5], where the dimensionless
transversemomentumof the electron is bigger than unity, namely p⊥/mc> 1.One fundamental process,
nonlinear ponderomotive scattering, assumes a collinear propagation geometry and has been studiedmaking
use of the paraxial approximation for thewave propagation, with laser pulse durations of 20 fs and above.
However, when laser pulses are shorter in time than 20 fs, the rapid carrier-wave amplitude variationsmust also
be taken into account [2].

Acceleration of sub-micron size electron bunches to relativistic energies in vacuumbymeans of radially
polarized electromagnetic pulses has been demonstrated experimentally and computationally [6, 7]. These
processes can be efficient in an unbounded free space acceleration process; however, they require the electron
bunch to be confined along the laser propagation axis. Thismechanism foresees no angular emission and the
laser duration is not specified. The axial confinement of the laser pulse is also the basis for the simplest schemes
so far proposed for achieving a linear energy gain for a relativistic electron bunch in vacuum.As an example, a
current state-of-the-art facility can provide a linac as amechanism for producing an electron bunch [8] holding a
non-zero initial energy , typically of the order of few keV. The bunch can experience a very high electromagnetic
field gradient while co-propagating phase-lockedwith an ultrashort laser pulse [9], thus acquiring relativistic
energies through a linear energy gain process. Here,much effort was also dedicated to isolate the second-order
quadratic energy gain typical of the ponderomotive scattering. Linear behaviour of the energy gain in an
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ultrashort, ultrarelativistic process can only be considered in a qualitative way due to the lack of a simple
relationship between conservation of energy during photon-electron interactions and the general theory of
ultrashort lasers acceleration in vacuum.Charged electron bunches ejected from an obliquely irradiated solid
slab have beenmodelised bymeans of electromagnetic work done in terms of emitted and reflected field in [10].
In this study, short laser pulses are used, and the variation ofmomentum appears to bemore complicated than it
was described in [11], due to the decomposition of the laser wave. There holds still an analogy between [10] and
[11] in the basicmechanism inwhich the electrons acquire energy first from the charge separation in the plasma
following the irradiation, and then by traveling together with the laser in vacuum. In addition to that, the
bunches traveling together with the reflectedwave are phase-locked like the ones emitted from a cluster. In spite
of the promising similarity between the two pictures, differences emerge after a second deep analysis. The
mechanismproposed in [11] includes an ultraintense few-cycle laser pulse and a spherical geometrywhich
allows to select exact emission directions according to scattering laws, a very important improvement in
precision and also a simplification in the evolution of the bunches, which appear to be packed together into a
nanometric size dense plasma region very soon. The novelty in [11] also relies in the fact that the particle
distribution inside the bunches is narrowed and overdense. The latter result also sheds new light on gaussian
nonlinear optics on the attosecond time scale. It is one of the recent advances in thisfield.

Few-cycle laser technology has now reached the point where relativistic focal intensities can be achieved,
allowing for new accelerator target designs which take advantage of small time and space scales. Laser-plasma
based acceleration schemes such as laser wakefield acceleration [12] are alreadywell established for longer pulses
and gas targets, but high-current injection is still a challenge. Energetic ion acceleration from laser-illuminated
droplets [13] or othermass-limited targets [14]has also received interest because of the potential for generating
beamswith narrow energy bandwidth.

In our previous work on laser-irradiated nanodroplets [11]we demonstrated that there is the optimal choice
of droplet size depending on the pulse intensity. Using 2-dimensional simulations it was possible to predict
emission angles for electron bunches generated by solid-density, nanometer-sized droplets after irradiation by a
few-cycle, ultraintense, linearly polarized, Gaussian laser pulse. Special attentionwas paid to deviations in the
electron emission pattern in the relativistic regimewith respect to the classicalMie theory’s predictions in the
attosecond time domain, when the electron acceleration is naturally sub-cycle. It was shown that emission angle
depends strongly on the laser intensity, roughly following the trend expected for ponderomotive scattering of
single electrons [15], but withmuch higher final energies. The reason for this was that after emission from
the cluster surface, the bunches propagate in the laser polarization plane, phase-lockedwith the laser
electromagnetic field.

In the present paper a fully three-dimensional analysis is presented in order to reconstruct this second ‘post-
acceleration’ phase of the bunches’ interactionwith the laser pulse. The paper is organized as follows: first the
interaction dynamics at the surface is briefly examined, with a special focus on the electric field enhancement at
the surface. Thefirst step, namely the initial energy acquired by the electron cloud formed immediately after the
passage of the laser pulse through the droplet, is a prerequisite for the onset of the subsequent ultra-relativistic
scattering process. Then, the energy evolution of the bunch is numerically tracked using PIC simulations in
order to determine the peak and cutoff energy values of a typical electron bunchwith afinite energy spread. In
section III a three-dimensional analyticalmodel is formulated and comparedwith the particle-tracking analyses
of corresponding PIC simulations performed in the context of a recent experiment [16].

2. Three-dimensional PIC simulation results

Following our initial work examining the electron bunch emission characteristics [11] and subsequent
numerical studies accompanying the experimental campaign reported in [16], we have carried out additional
three-dimensional simulations to investigate the long-time evolution of the post-acceleration of attosecond
electron bunches emitted from sub-micron scale spherical targets due to irradiation by a few-cycle laser pulse.

It has already been shown in [11] that significant departures fromMie theory are found for electron bunch
emission for droplets whose radii satisfy the condition δr< R< 10δr, where δr= γ1/2c/ωp is the plasma
relativistic skin depth. To examine the formation and propagation dynamics of electron bunches created during
such interactions, we havemade use of the electromagnetic, 3-dimensional EPOCHcode [17] on the JURECA
cluster [18] at the Jülich SupercomputingCentre. The droplet wasmodeled in simulations by a solid 200nm
diameter hemisphere with density n0= 100nc placed on the top of a cone, in order tomimic the configuration
used in the experiment [16]. This was irradiated by a 2-cycle, 4.5 fs laser pulse with 1.22μm× 1.22 μmfocal spot
size, linearly polarized in the plane perpendicular to the cone axis, so that a quasi-2D bunch emission geometry is
achieved. The laser intensity Iwas varied between 2× 1019W cm−2 and 1021 W cm−2. The sphere size is chosen
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tomatch the empirical criterion above to avoid complete relativistic transparency and efficiently produce the
overdense attosecond buncheswith experimentally feasible target dimensions.

Despite the short interaction time, the target still undergoes some expansion, apart from likely being subject
to some laser prepulse whichwill also serve to pre-ionize the target. Field and impact ionizationmaywell alter
the details of the density profile, but this is beyond the scope of the present study. An example of the effective
plasma profile seen by themain pulse is shown infigure 1 for an intensity I= 5× 1019. Here the density rapidly
falls towards its critical value within the focal dimension. This is the actual cloudwithwhich the laser pulse will
interact for the post-accelerationmechanism,with some oscillations due to the electric field value—the stronger

Figure 1.Plasma profile expansion soon after the interaction of the needle with the laser.The cluster size is 200 nm, the laser intensity
is I = 5 × 1019 W cm−2 and its duration is 4.5 fs. The plasma hydrodynamic expansion due to prepulse effects has been reproduced by
simulating an initial temperature of about 5KeV. The blue curve is an exponential fit with scalelength L = 0.069 μm

Figure 2.Enhanced vector electricfield (red arrows) surrounding the three-dimensional sphere in the emission plane: (a) after at
t = 12.5 fs and (b) at t = 18.75 fs after the start of the laser-droplet interaction. The color scale on the right represents the electron
density, n nlog e c( ). The inside part of the droplet remains almost unperturbed.
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the electricfield, the faster the depletion.However, the electronmean cloud density lies between n= ncrit inside
the focus for I= 2× 1019 and n≈ 0.5ncrit for I= (2− 8)× 1019.

The acceleration follows a two-stage process: attosecond electron bunches arefirst emitted from the target
surface and are injected into the electric field null phase of the laser pulsewith relativistic energies [16]. There
then follows a second post-acceleration step inwhich the electron bunch gains energywhile co-propagatingwith
the transmitted part of the laser pulse for at least one Rayleigh length beyond the original target location. This is a
very important aspect which distinguishes the present study from the conventional ‘vacuum focus’ inwhich
phase slippage tends to cause any energy gain to be cancelled out due to a transition between different half-cycles
of the laser. Later we further analyze the linear ponderomotive energy gain inmore detail, under the special
circumstances where the interaction of the bunches with the laser takes place immediately after the laser-droplet
illumination.

To analyze both the bunches’ emission and their subsequent post-acceleration in the electromagnetic field, a
reduced set of particles from the 3DPIC simulation (around 3%of the total)were tracked. Emission occurs
primarily in the laser polarization plane to the left and right of the propagation axis , as it is visible infigure 2. The
asymmetry between left or right here does not compromise the analysis since the same statistical distribution can
be applied to both sides. It turns out that forward trajectories with a very reduced set of particles, that is, below
10, are not representative of the true phase space evolution of the bunch since space charge effectsmust be
properly taken into account.

Before drawing an analogy between afirst-step accelerator and the near-field effects in the vicinity of the
droplet—where soon after the laser is incident an enhanced electric field sustains the initial phase of the
acceleration (see figure 2)—we split the process in two steps. The electrons are initially stationary on the surface,
so it is assumed that the enhanced field around the droplet soon after the particles’ ejection enables the
attosecond bunch thus formed to acquire an initially relativistic energywithin a laser subcycle. This assumption
will be examinedmore closely shortly. A visual representation of the enhanced electricfield structure inwhich
the electron cloud is bound to the plasmonic initial energy is shown infigure 3. A dense electron cloudwill be
formed after the laser- plasma interactionwhen the longitudinal field island vanish. However, initial energy for
cloud electrons and for bunches’ electrons are the same at this point of space and time, where transverse field is
about to provide confinement effect for bunches.

There are two consequences of this early interaction phase: first, the bunches will acquire a relativistic
injection energywhich is a consequence of high electric fieldO(TV/m) generated at the droplet surface. Second,
the bunches are overdense, and verymuch concentrated in space—a fewhundreds of nm—andwith very little
divergence with respect to the laser beam. These properties of the bunches have practical advantages, butmakes
it challenging to analyze the bunch dynamics in detail via PIC simulation.

In this case it is important to have sufficient statistics to resolve a range of relativistic trajectories and collect
enough single particle interactions to reasonably represent the final energy spread of the bunch. The peak energy
value is statistically calculated as themean of theGaussian distribution outside thefiltered electron bunch. Any
Gaussian distribution has a peak, an aperture and two tails.We aremainly interested in the peak value, where

Figure 3. Locally enhanced longitudinal electricfield forming interference islands due to the geometry of the solid simulated droplet.
The cluster size is 200 nm, the laser intensity is I = 5 × 1019 W cm−2.
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most of the electrons are, and in the extreme tail value, namely themaximum reachable energy gainwhich is
allowed for the electron bunch. The relationship between optimal energy gain and phase shift of the bunches due
to electron trajectory position crossingwith laser wave, can also be examined analytically in the quasiparticle
approximation.

Trajectories collectedwith a time-resolution of 250 attoseconds are summarized infigure 4. Filtering is
performeddynamicallywith the help of a simple artificial intelligence selection technique [19], as a post-
simulation analysis on thebunches selected by the PIC code. This happens because the dynamics is non-linear and
therefore electron trajectories in the PIC selected bunch are allowed to cross each other. Previous nonlinear studies
have so far dealtwith longer pulse schemes, for examplehigh-intensityVLA schemes [20]orplasmamirror
injectors [21]. In these cases themeandirection and energy emerge progressively as part of a temporally limited
processwhose duration is strictly connected to thepulse duration itself. This is not applicable inour context.

3. Analyticalmodel of the electron bunches’ energy gain

One recent example of a linear energy gain in a few-cycle laser accelerated buncheswhen the laser focus is small
or of the order of the laser wavelength is to be found in [9]. However, when considering both theoretical [11] and
experimental results [16], bunch dynamics treatments at nonrelativistic laser intensities are insufficient to
explain ourfindings. No direct evidence for longitudinal acceleration of the bunch by the laser in vacuum could
be identified here. Instead the oblique acceleration of the bunches happens far way from the focus and at two
symmetric orientations relative to ponderomotive scattering.

Moreover,most of the previous studies have devoted their efforts into distinguishing the paraxial
approximation, which is valid for long pulses, fromnon-paraxial treatments which allow for a shorter pulse
duration; but little attention has been devoted to the case of a few-cycle laser pulse to date.

Here wewillfirst assume that our 4.5 fs laser pulse is in the short-pulse regime according to the subdivision
made byHartemann et al [2]. Themulti-electron dynamics are studied by investigating the very high-energy
gain observed in three-dimensional PIC simulations (section 2).

3.1. Basic equations
According to [2] themaximum energy in afinite duration laser wave can be simply inferred from the temporal
evolution of the γ of the electrons, which in turn corresponds to the thirdmember of the relativistic energy-
momentum transfer equations.We are interested in analyzing the process immediately after the bunch
extraction from the cluster, that is, the laser-vacuum linear acceleration in the relativistic regime. Thereforewe
recall the already established analysis in [5] and take thismodel as a starting point. The electron 4-velocity uμ,
4-momentum pμ and the 4-vector potentialAμ can be defined as a function of the proper time τ of the electron
particle along its world line as follows:

b
t

g= =m
m

u
c

dx

d
a

1
1, , 1( ) ( )

Figure 4.Mean energy increase offiltered bunches while interacting with the few-cycle Gaussian laser pulse in vacuum is represented
in a discrete curve as a function of effective simulation time after the start of the interactionwith the laser (in fs). The cluster size is
200 nm, the laser intensity is varied- frombottom to top- between I = 2 × 1019 W cm−2, 5 × 1019 W cm−2, 8 × 1019 W cm−2,
2.4 × 1020 W cm−2, 1 × 1021 W cm−2 and its duration is 4.5 fs.
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In equations (1) the laser phasef is expressed as a function of the 4-vector wave number kμ and of the axis
coordinates 4-vector xμ. The scalarω0 is thewave frequency. The vector (1,0,0,1) indicates that the laser travels
along z direction. The light-cone invariant k k g b b g= = - = -1 , 1 10 0 0 0 0

2( ) and the transverse

momentumvectoru⊥(τ) are defined respectively by the following two equations:
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It is straightforward to see howu⊥(τ) is a function of proper time τ through thewave phasef. Given that
g = + +^ uu1 z

2 2 2 the following general result for the evolution equation of γ in the context of focused plane
waves holds—for details see [5] and notes in appendix A:
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In the Lorentz gauge and for a solenoidal vector potential,∇ · A= 0, the vector potential and the electric
field transformed as in equation (3b) and equation (3c). Equation (3a) can be regarded as the relativistic
ponderomotive scattering version of the Lawson-Woodward theorem. In principle, the electron cannot acquire
energy in the planewave, whichmeans that, when the electron is accelerated, it also radiates. In the final state, the
laserwave attenuates, and a permanent destructive interference between the laser wave and the electronwave
holds. The electron radiates waves that hold a destructive interference with the laser pulse. Even for two-cycle
pulses the laser electric field can still bemathematically represented as the product of a complex envelope
function a(t− z/c) and an optical carrier wave w -e j t z c0( ). For our specific case, a slowly varying envelopewould
fit the phase invariant picture when put in the form f f f f= ºfh E g e E g sini

0 0( ) ( ) ( ) ( ).
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3.2. Functional integral
The following treatment departs somewhat fromHartemann’s equations ofmotion. In fact what wewant to get
here is an explicit expression for the vector potentialAμ(f). The functional derivative rule can be used to state the
vector potential variation in themost general way, as a function of f f f=G g sin[ ] ( ) ( ). Here ,f(τ) is the laser
envelope phase, which can be expressed as a function of the proper time. Due to the non-invariance of the
proper time itself, the functional representationwill be proven to be useful because it allows simplifying the
picture by considering only the phase variation in the vector potential. As long as the gauge conditions are
maintained, the integralmust be considered throughout the path along the effective phase displacement
between the quasi-particle representing the electron bunch and the carrier envelope in the ultraintense laser, in
order to express the vector potential variation. The high density of the bunch and the relativistic energy of its
electrons in turn induce a strong correlationwithin the overdense bunch structure, whose nature is new and
linked to themotion of the bunches in the laser. The second integral of the identity for the vector potential can be
integrated by parts.
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The specialmathematical relationship
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has been used, apart from the general definition of the functional derivative. The envelope function is now
expressed as f f f=G g sin( ) ( ) , with g(f) as in equation (4).
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The extra 2ω0 factor in equation (7) can be absorbed in a dimensionless picturewhere c= 1 andκμ= ω0 The
function g(u) inside the integral can be developed using the trigonometric identity,

a b a b a b- = +cos cos cos sin sin( ) , and thus yields

f
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The shift of the phase between the electron trajectory and the laserfield crossing it is already known to be a
consequence of the switching on of the laser electric pulse also in the simplified ponderomotive picture [22] and
may bemathematically expressed in three different ways:

df f f= ¢ ¢ - ¢x x x alocal variation, 9( ) ( ) ( ) ( )
f f f= ¢ -d x x bdifferential variation, 9( ) ( ) ( )

f f f df fD = ¢ ¢ - = +x x d ctotal variation, 9( ) ( ) ( )

The expression in equation (9c)will be used in the following integration to represent the effective phase shift in
energy gain final calculation. The kind of variations considered in 9a, 9bwill be used in appendix A tofigure out
how the functional can be applied in this specific case. All of these variations do not take into account directly
proper time, because it is not an invariant. Our aim is not tomodel time in all systems of reference, since the
phase is enough to get a description of the process.

We reconstruct the path alongwhich the γ value actually increases up to themaximumand cutoff energies
recognized as themain features of the electron bunch by solving the integral in equation (4) explicitly, instead of
calculating a parametric solution as it is done in [2], in order to determine the effective variation of the γ during a
finite time inwhich the electron remains in the laserwave. To do this we take our lead from the particle tracking
results for the energy gain infigure 4. Equation (7) is integrated by parts thus:

ò ò= - -
f

f
fD

D
D

ku u du ku u k ku udusin sin sin cos sin 2 cos ,
0

2 2
0

0
( ) ( ) ( ) ∣ ( )

ò ò= -
f

f
fD

D
D

k ku udu k ku u k k ku udusin 2 cos sin 2 sin cos 2 sin
0

0
0

( ) [ ( ) ] ( )

ò ò

ò f f f f

= - +

=
+

D D + D D

f f

f

D D

D

k k ku udu k u ku k ku udu

ku udu
k

k k k

cos 2 sin cos cos 2 sin 2 cos

sin 2 cos
1

1
sin 2 sin cos 2 cos .

0

2

0

3

0 2

( ) ( ) ( )

( ) [ ( ) ( ) ( ) ( )]

Integrating the 2nd term a further two times leads to a recurrence relationwhich can be solved to yield the
final result: an analytical solution explicitly dependent on thewave phase shift with respect to the electron
trajectory:

ò f f f f f f= - D D -
+

D D + D D
fD
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k k ksin sin sin cos
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1
sin 2 sin cos 2 sin .

10
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2 2
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( )

The sin2 envelope is perturbed by the oscillatory terms, thus generating in principle a different numerical
result for the gain if the phase shift was not zero- namely, if the buncheswere not phase-lockedwith the laser
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[23]. The function in equation (10) is displayed infigure 5 for the realistic values in the case of a two-cycle laser
pulse (k= 0.27). In order to state themathematical difference between the x integration variable infigure 5 and
the phase variable (non necessarily a function of proper time) used in the treatment byHartemann et al [5], we
refer to the definition of functional as a number associated to a integral defined over a vector set of functions as it
is presented in [24].

In the integral expression obtained in equation (10) a physical discontinuitymust be avoided sincewhen the
general shift is zero, the integral is also zero. Thismeans that when there is no phase difference between the
electron trajectory and the laserfield, then there is no gain (no assumption ismade on the initial laser profile by
setting the lower extreme of the integral equal to zero). However, this is not supposed to really happen for any
nonzero shift that is within the allowed interval and the periodicity of the sine and cosine factors, namely
whenever the parenthesis of the factors yield a null result for (Δf+ π). In order to remove the discontinuity, we
directly consider the square of the integral- i.e. the true acceleration yielded apart from the corrective terms, in
the critical phases that are an integermultiple ofπ. A straightforward purelymathematical calculation, including
amacLaurin development for the generic function coming from the expression for the square of the integral I
defined as in equation (7) depending on the phasewhenf= 0, yields the result
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where E|f+π represents the electricfield convolution expressionwhose cycle-limited Fourier transform gives the

product of the two signal envelopes f p+ f
p

Dg Arect
2( )( ) = ò f p y yD + -

p

p y
-

+
g A drect

D2( )( ) (see
appendix B).

The above calculation provides a linear fit, and therefore, a linear dependence inE0, when the actual value of
the phase shift is given. This is especially relevant for the points inwhich exact gain is reached, namely, the
allowedmultiples ofΔf= π in the 0, 3π phase shift range. In particular, the dimensionlessmeasure for the
productωΔτ can be set toΔf= 2π for the integration on the cone. Keeping the argument of the sin function
within the one laser period, one can easily observe how the choice ofmultiples ofπ/2 forΔf yields a null
contribution in the cosine factorwithin thefirst termof equation (10), and therefore only integermultiples ofπ

Figure 5.Cartesian representation for the integral parametric solution 10. The x axis represents the argument, which physically
corresponds to themaximumextreme of the integral calculation, orΔf. The absolute value of the gamma increase descends from the

integral solution after applying the equation (3a) andmultiplying by the factorsα and b+1

2
0 . After that, results in table 2 for different

intensities can be found.Discrepancywithfiltering values are due to the statistical features of the bunches described in appendix B.
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should be considered. IfΔf= π the factor k - or the third term in equation (8)-makes the first term in

equation (10) on the cone surface reduce to p p- = - = =p f
p

pDsin cos sin cos 2 2 1 22
4

2
4

2( ) ( )( ) ( ) ( ) ,

whichmeans that the square integral yields a dimensionless gain equal to E

4
0 . It is found that forΔf= 2π thefirst

consistent gamma increase takes place and the calculation of energy leads to the statistical peak value of the
Gaussian bunch corresponds to a dimensionless angle p

2
and a gain equal to E

2
0 . For themaximumpossible shift

Δf= 3π the dimensionless angle is p3

4
,and the dimensionless energy gain is E3

4
0 .

3.3. Tracking analysis and numerical results
3.3.1. From initial energy to peak value
In order to confirm the results coming from the integral resolution in equation (10), the energetic
pseudoparticles have been tracked in the code sincewhen the sub-cycle dynamics appears. Since the electron
cannot either be emitted or be injectedwith a non-zero initial energy , an approximation for the initial energy γ0
in equation (3a)must be found.

Previous plasmonics experiments with lasers and nanotargets have been carried out formuch lower laser
intensities and in principle different electron and light emissionmodels have been considered [25, 26]. An
analytical treatment based on exact solutions ofDirac’s equation formonochromatic linear waves at relativistic
intensity in plasmas has been developed in [27], where themain difference is that theDrude free electronmodel
of a plasmamediumonly extends to the interface of the droplet with the vacuum.

In [11] the dielectric permittivity w w w= - 1m p
2 2( ) is assumed for the droplet, whereωp is the plasma

frequency andω is the laser frequency. However, in contrast to the assumptions used in [27], the considered
plasma is not the one of themedium throughwhich the laser is traveling initially. Itmust be noticed that, in any
case, the considered electron density newould bemore than critical, even applying the empirical criterion in [11]
for droplets, because, under this condition, plasma transparency reduces the initial electron density (100nc) by a
factor equal to the γ of the laser, which is still not enough to get an underdensemedium (see density log scale in
figure 2 as an example). According to the free electronmodel, which is widely used in nanoplasmonics and
nanophotonics , if we can consider the outcoming electron cloud as a plasmonic surfacewith respect to the
positively charged solid cluster left behind, we always get a density less than critical or around critical.

This hypothesis has been verified bymeans of experimentalmeasurements in a recent work showed in [28],
where PIC calculations were carried on in the context of an intense laser irradiation for ion acceleration from
submicron droplets. This scheme reproduces the conditions for theDebye length to be of the same order of the
droplet diameter, as in [13]. In addition to that, it is shownhow the polarization choice associated to this
mathematical treatment, namely, the usage of 2ω0 irradiation source, is responsible for the formation of a hot
electron cloudwith reduced temperature, which is propaedeutic to the development of a subsequent ion cloud
generated by operating a charge separationmechanism. The 2ω0 factor yielded by equation (7) constitutes the
link between ourmodel and the experimental 2ω polarization that can be chosen for an ion acceleration that
happens in two steps. This is analogous to the process described in [13].

The plasmonic energy peak in the vicinity of a spherical nanoobject has been demonstrated to be tunable,
according to a dimensionless generalized plasmonicity index [29]. The evolution of the resonance energy shows
a square root trend as a function of electron density. This is symmetrical with respect to the change of plasma
frequency in the droplet as assumed in [11], where w w g=p

r reflected the relativistic transparency effect. The
electron density shows a quadratic dependence on the plasma frequency, therefore in this context, if the plasma
frequency is not to be changed, the effective plasma density will be obtained from amultiplication by the factor
γ. The time dependence of the γ factor is not yet discussed in these previous studies, due to the lack of dedicated
calculations and/ormeasurements with the existing detectionmethods.

In [29], the plasmonic behaviour just depends on sphere size andmaterial. It is important to remark that
plasmonicity is notfield enhancement; it is a way of parametrizing resonance that constitutes a good theoretical

Table 1.Table of electron bunches’ plasmonic
energies, as inferred from cloud density analysis (see
figure 1) and also confirmed by tracking’s initial
energyfindings.

Laser Irradiance Filtered plasmonic energy

2 × 1019 W cm−2 ≈0.9 MeV

5 × 1019 W cm−2 ≈1.1 MeV

8 × 1019 W cm−2 ≈1.2 MeV

1.7 × 1020 W cm−2 ≈1.3MeV

2.4 × 1020 W cm−2 ≈1.5 MeV
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approach both in quantum theory and in classical electrodynamics approach, and it constitutes a second-order
correction to thefield enhancement calculations as it is effectively done bymeans of electromagnetic equations
and consistent numericalmodeling. Therefore, ourMie calculations for the near-field enhancement that have
been discussed in [11] do not need a specific correction bymeans of the quantumdensity of states, neither in the
Mie code not in the initial setting of the PIC code. Due to the relativistic intensity of the laser, the initial
configuration vanishes rapidly and a specific determination of the density of states as in [30]would bewashed
away by the time evolution of the γ factor in the density expression. In the end, the only possible approximation
for the initialmean energy value from the artificial intelligence analysis over a dense sample in the cloud can only
be determinedwith a general formula for the plasmonic energy.

The so far accomplished PIC calculations in our specificwork do not allow to identify the plasmonic energy
of the transition or the transition damping, two factors which actually change the effective plasmonicity. The
shift in the energy as a function of the electron density of the cloud is coming out as a collective process in the
initial determination of the average energy. The prevalent energy in the statistical population of the cloud is
found, and itsfluctuations are only formally connected to the radiation damping changes. The frequency of the
plasmonic oscillation is an artificial process here, since it comes from further interaction of the cloudwith the
laser pulse. The cloud itself represents amediumwith its proper permittivity and its characteristic resonance,
and undergoes functional treatment according to its strong cross-correlation effects (see appendix B). This
mechanism is new outsidemetals and otherwell-known plasmonicmaterials, and it is for the first time
identified here at relativistic light intensities.When the laser energy increases, the plasmonic cloud ismore and
more depleted by the extraction process and its density is lowered down to n= 0.25ncr.

Due to the complexity of this process, only the results for I= 5e19W cm−2 will be shown, although a
consistent table could be built for all intensities.

The initial value of the electron energy in the cloud as presented infigure 4(c) in [16] is reconstructed by
means offiltered tracking of the bunches along the scattering directions. The results for different intensities are
presented in table 1.

Higher intensities before the upper limit of I= 1023 W cm−2 have been also investigated and included as
upper graph curves infigure 4. Their behaviour, although similar to the lower energy curves, shows a saturation
process. The upper laser intensity limit specified above is foundwhen the dropletmaterial becomes optically
transparent.

The saturation process leads to afinal peak value for the bunches’ electron energy. This value can be
comparedwith the results from equation (10) ,provided that the right phase difference values are chosen. In
principle equation (10) can cover all transient energy values which are obtainable in the laser wave crossing the

Table 2. table of electron bunches’ peak energies, as calculated theoretically in
equation (11) and as inferred from tracking (see figure 4).

Laser Irradiance Predicted peak Tracked peak Peak angle

2 × 1019 W cm−2 ≈2.42 MeV ≈ 2.75 MeV 13.7°
5 × 1019 W cm−2 ≈4.51 MeV ≈4.15 MeV 18°
8 × 1019 W cm−2 ≈6.39 MeV ≈6.3 MeV 9.21°

Figure 6.Comparison of energies predicted by equation (11), against the numerical tracking results in table 2 for different laser
intensities. Discrepancywith filtering values are due to the statistical features of the bunches described in appendix C.
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electrons’ trajectory. In practice, when substitutingΔfwith physical valueswhich can be related to the cycles of
the laser, we obtain the favoured phase values at which optimal energy gain takes place. A straightforward
calculation for these cases shows that all terms in equation (10) vanish except for thefirst one. In the end,
one can notice that the result of the integral term in equation (10) - at least the electric field part- is equal to

òa a f f= D D
fD

g u udu gsin cos
0

( ) ( ) ( )= a f p f pD + D + =
w f pD +g Esin 2 e

c
( ) ( ) ∣ . The second factor

shift can be neglected if wemake abstraction out of asymmetry effects. At the same time, the first termof the
integral expression can be expressed in terms of the same initial electric field, only calculated at a point inwhich
the phase is seen as shifted byπ. Therefore the totalmaximumavailable shift will be the one of an entire laser
pulse plus the shift, or 3π.

Figure 7.Attosecond electronbunch emission after the start of the laser-droplet interaction, for a laser intensity (a) 2.4 × 1020 W cm−2

and (b) 1 × 1021 W cm−2. The enhanced total electricfield is represented by red arrows inbothpictures. The log scale on the right
represents electrondensity, namely n nlog e crit( ).

Figure 8. Logarithmicplots in yof the cutoff energyof thefilteredbunchas a functionof time after the start of the interactionwith the laser
(in fs). The cluster size is 200 nm, the laser intensity is varied- frombottomto top-between I= 2× 1019 W cm−2, 5× 1019 W cm−2, 8×
1019 W cm−2, 2.4× 1020 W cm−2, 1× 1021 W cm−2 and itsduration is 4.5 fs.
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3.3.2. Interpretation of tracking results
Before presenting the full comparison of three-dimensional trackingwith fits from themathematical treatment,
we shallmention how the presence of afinite region of acceleration highly simplifies this process both in the
theory and in the numerical calculation. A close look at the analytical function inside the integral immediately
shows such an advantage. It is important to notice how, on the cone, the argument of the laser envelope function
g(u) is smaller thanπ, therefore the quasi-particle only sees thefirst laser cycle on the light cone surface.When
Δf= 4π, corresponding to a dimensionless shift ofπ then the sin term goes to zero, that is, no gain after the
maximumphase shift. This dumping is possible because of themathematical formof the laser envelope
function, which in turn implies afinite duration in the physical picture of the laser. Therefore, the two-cycle
interaction of length 2π reduces to a one-cycle interaction in the argument of the g(u) function. This is essentially
a natural consequence of the two-cycle duration of the laser pulse. Taking into account the value of n= 2k, with
k defined as in equation (8), and its dependence onω andΔτ= 4.5fs, thefinal result can be inferred for the
different laser intensities provided that the initial value of the gamma is found bymeans of the initial

ponderomotive condition g = + a10 0
2( ) and the subsequent application of equation (4)where the square of

the integral is substituted by itsMacLaurin development as in equation (11). The analytical results hold physical
significance for a shift in phase on the cone equal toπ as it is determined by the difference with the initial point
forΔf and the approximated calculation inΔf+ π in the development in equation (11). The selected results
for different laser intensities are comparedwith tracking outcomes in table 2).

This result has been verified bymeans of tracking of the bunch at longer times, namely up to 165 fs and
beyond, and it is shown infigure 9. At this time the energy gain saturates and theGaussian formof the energy
spectrumof the single bunch is represented infigure 10 for I= 5× 1019 W cm−2, while still keeping the global
contribution of background particles coming from the cluster as a strict comparison. The selection of energies
within a single bunch is evident. The contribution to the highest possible apparent energy comes from the on-
axis RPA electrons, which are not bunches. It is important then to notice how the bunches’filtering allows

Figure 9.Red line plot of the tracked bunch energy spectrum (left) and polar orientation of the four bunches in a three-dimensional
grid (right) for laser intensity I = 5 × 1019 W cm−2. The graph on the left emphasizes themaximumenergy cutoff coincident with the
numerical value offigure 1(d) in [16]. The peak bunch energy is the result of dedicated tracking as it is represented infigure 4.On the
right side themaximumangle in equation (14) corresponds to the denser bunches’ regions, whereas the small dense emission close to
the x-axis follows the lowest direction in equation (14) and corresponds both to the blue triangle shown on the left picture offigure 2
in [16] and to theminimumangle in equation (14).

Figure 10. Late-time tracking for electron bunch energy profile (left, red , below blue total energy spectrum) and for angular emission
surrounding the three-dimensional sphere in the emission plane, at t = 20 fs after the start of the laser-droplet interaction, for a laser
intensity 5 × 1019 W cm−2.
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perfect agreement with theory andwith experimental findings. These results hold for different focus sizes, for
example, from just below to double its original valuew2= 1, 22× 2= 2, 44 μm. In both cases the initial cloud
and the short-range scattering evolution exhibit the same behaviour. The long range tracking statistical and
dynamical analysis shows a transition in the statistically determined overallmean energy. As long as time scale
approaches the 3π gain phase, some electrons startmoving toward the cutoff energy and this process shifts the
apparent peak energy.However, intermediate values between peak and cutoff energy do not represent special
optimal gain themselves, but are instead an effect of spreading of the acceleration process between different
phases as seen by the electrons. A singlemonoenergetic electron bunchwhose central direction is deviated
according to optical transparency effects [11] is nevertheless formed and shows a continuumdistribution (see
figures 9, 10).

To check the intensity dependence of this process, we perform severalmore simulations at higher intensities.
The electricfield analysis for droplets irradiated by few-cycle lasers of intensity I= 2.4× 1020 W cm−2 and
1× 1021 W cm−2 respectively are presented infigure 7. In the same picture it is also visible how the number of
extracted attosecond electron bunches also increases with increasing laser intensity, leading tomore overdense
slices in between the zones of the zero electric field. This process happens at the expense of the electron cloud
surrounding the droplet.

Themaximum energy tracking has been carried out in an analogouswaywith respect to themean energy
tracking, allowing for efficient comparison at long simulation times. SubstitutingΔf= 3π in equation (10) the
cutoff energy value of theGaussian distribution comes out fromdirect analytical calculation.The corresponding
values for the absolute amplitude of the integral value can also be visualized infigure 5. The critical values of
Δf= 2π,Δf= 3π correspond numerically to the foreseen critical phases for scattering in [2] and long range
additional energy-gaining interactions are to be excluded in advance. Therefore only two laser cycles are the
optimal choice for a positive gain.Negative cycles, and corresponding negative energy solutions on the light
cone, are not allowed in this treatment (seemethodological notes).

3.3.3. Understanding of the phase effects in terms of the spectrum of the bunches
The limitation in thefinal phase shift value and the specific periodicity of positive energy gain are consistent with
the existence of afinite interaction region, although the bunches can travel for several Rayleigh lengths before
being separated from the laser pulse. The phase is an invariant and therefore only the phase spectrum that the
particles see before the slippage is important. On the other hand, the phase is related to the number of entire
cycles which are in principle needed to ensure the energy gain , and that cannot exceed 3π. The explicit
calculations for the corresponding space are addressed in the following.
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The space covered forΔψ= 2π, 3π respectively corresponds to the saturation length for the peak and the
cutoff value of the energy for the bunch. This has been verified against the bunches’tracking in the simulation for
I= 5× 1019W cm−2. In particular, it turns out from formula in equation (13) that at this laser intensity the
distance at which the peak is formed is 6.27μm, and the distance for the cutoff is 9.41μm.Both of themhave
been observed in the corresponding tracking curves infigures 4 and 8. The oscillations in themean and
maximumenergies that start to appear at this distance points, are a reflection of how the tracking has been built.
In practice, the logical functions that ‘cut’ the bunch region in the post-simulation analysis only identify as a
starting point themass and charge density. However, it is possible to set up independent calculations for

Table 3.Table of electron bunches’ cutoff energies, as calculated theoretically in 16 by
using initial conditions as specified in table 1 and as inferred from tracking (seefigure 8).

Laser Irradiance Predicted cutoff Tracked cutoff Cutoff angle

2 × 1019 W cm−2 ≈9.12 MeV ≈12 MeV 15.54°
5 × 1019 W cm−2 ≈21.19 MeV ≈20 MeV 27.99°
8 × 1019 W cm−2 ≈33.27 MeV ≈26.5 MeV 15.05°
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identifying the bunch charge statistical distribution on a virtual detector that catches the bunches at different
time instants. According to the results of both three-dimensional simulations and experimental findings in [16],
the power distribution of the spectrum can be taken asGaussian from early times of the post-acceleration.

By calculating separately the basic frequency and the inverse of the standard deviation of the spectrum, one
can separate the coherent region of the signal—which takes place before the saturation lengths are reached; and
the incoherent region—showing up after the saturation length. For a bunch of a sub-micron length these regions
are given by w s-

t
1 (coherent) and w s-

t
1 (incoherent) respectively [31, 32]. The value ofσt is given by the

standard deviation of the inverse of the frequency interval , or temporal width of the bunch.
The incoherent region of the spectrum is normally associatedwith no correct information of the bunch,

unless thewhole analysis is changed, and shifted to an imaginary spectrum. Adetailed Fourier analysis of the
bunches’spectrum goes beyond the scope of this study (see appendix C).

3.3.4. Discussion ofmethods
As long as of both longitudinal and transverse laser pulse components are present, the electrodynamic currents
generated by the lasermust play a role in the energy increase. This is also in good agreement with the geometrical
momentumdecomposition in the two-dimensional description in [11].

Due to the lack of a specific theoretical treatment which states an absolute tuning of the few cycle laser
interactionwithmatter at nanoscale, three-dimensional particle-in-cell simulationsmust be used to determine
threshold for bunch production, spacing and the effects of ultra-tight focusing or ultrashort pulse duration. In
[9] it is well established how the shortness of the laser pulse effectively changes the energy scaling.However, in
the original work byWong et al [9] the initial conditions appear to be different and a completematchingwith the
laser theory is not carried on.Here, the results of three-dimensional simulations clearly indicate the limitation
on any approximation neglecting the charged particle trajectory in the laser field. Therefore the treatment in [9]
represents a statistical approachwhich shall not be used as a substitute for theoretical analysis. The realistic
description based on the effective duration of the laser-bunch interaction can be only provided by three-
dimensional full analysis.

The determination of bunches’ cutoff energy on a statistical point of view-with post-processing and basic
artificial intelligence techniques is represented by graph lines infigure 8.When startingwith a initial value of
γ= 2.1, as it is set in subset tracking in the three-dimensional EPOCHcode, with the aimof following the initial
condition for the formation of an after-expansion cloud as it is shown infigure 1, the time evolutionmaximum
attainable value of γ can be easily calculated in the limit of a short planewave (see equation (16)), fromhence the
cutoff energy value can be estimated. The cutoff bunches’ energies corresponding to different applied laser
intensities are summarized in table 3.

3.3.5. Discussion of emission angles
The angles of emission in tables 2, 3,may be explainedwith themaximumandminimumemission angles as a
function of the initial andfinal γ andβ of the electron as foreseen in [2]. The corresponding formulas are here
recalled and solved by substituting the same initial conditions as for the subset tracking in EPOCHand for
determining themaximumenergy:

g
g g b

Q =
-

- -
 Q

b
g
g+

arctan
1

1
, 14

2

1

1 2

0 0
min

0 0

⎡

⎣

⎢⎢⎢⎢

⎡
⎣⎢
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎤

⎦

⎥⎥⎥⎥
( )

( )
( )

g b b
Q =

+
 Qarctan

1 1

2 1
. 15max

0 0 0

1 2

max

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥( )

( )

For a resume of the cutoff energy angle dependence on laser intensity, see table 3.
The formula formaximum energy gain in short planewaves from [5] reads
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and is also in agreementwith figure 8 and table 3. The limit of plane waves sets themaximum energy which
is achievable far from the focus, and that is consistent with amany Rayleigh length extended acceleration.
The current treatment sets no overcoming of this limit, therefore respecting the already known limitations
for the scattering process. The only way to increase further energy of the emitted bunches is to explore
all the possible highest laser intensities. Once again for the determination of the cutoff energies, we have
applied the plasmonic initial condition, which reads γ0= 1.1MeV. The highest intensities, until the
upper limit, are represented in figure 8. Themaximum energy from equation (10) and equation (16) reads
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=E MeV38max for I= 2.4× 1020 W cm−2 and =E MeV100max for I= 1× 1021 W cm−2. All of these
values are in very good agreement with the tracking results in figure 8. Those are very high energy values and
therefore especially long simulation time and tracking are required. The non-invariance of the proper
acceleration time -which cannot be stated before- forces the tracking up to the computational limits; the
matching at 1× 1021 W cm−2 is nevertheless reached within the computational capabilities of the resources.
Therefore, intensities above 1× 1021 W cm−2 have not been investigated. However, the energy curves in
[11, 16] are nevertheless fully covered.

3.4. Angles of emission
The absence of second-order effects in energy gain, and consequently the linear dependence of the γ increment
on the electricfield, is due to the laser pulse’s very short duration , which is compatible with the absence of
significant doubleDoppler up-shift and quivering down-shift effects. Both radiating effects can occurwhen
relativistic electron beams interact with lasers viamultiphoton processes, under the classical view of Compton
scattering or in Thomson scattering at some interaction angle [33]. However, the initial electron γmust bemuch
greater that the laser a0, whereas here γ0 is smaller than a0. Therefore no quivering effectmust be considered and
Hartemann’s three dimensional treatment can be followed, for determining the angle at which the electron
bunch should be traveling in order to satisfy energy conservation. For planewaves only, a strict correlation is
drawn between the electron trajectory angle q = ^arctan u uz(∣( ) ( )∣) and its energy gamma. This leads to the
following set ofmathematical relationships:
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Substituting the finalmean value of γ= 8.3 in equation (17), one obtainsΘ= 0, 32rad= 18° for
I= 5× 1019W cm−2. This should be compared to the deflected angle infigure 3 in [11]. Substituting thefinal
cutoff value of γ= 22.56 the same formula yieldsΘ= 0.2rad= 11.44° , which is to be comparedwith the results
for later time tracking infigures 9, 10. Substituting γ= 35.32 results inΘ= 0.16rad= 9.21°. It is interesting to
notice that thefinal correspondence between equation (17) and equation (14) reinforces the three-dimensional
validity of the previous treatment. For the lowest intensity I= 2× 1019W cm−2 the slightly different initial
condition in γ0= 2.0 yields a foreseen angle ofΘ= 0.24rad= 13.7° for thefinalmean energy—see table 2.

We can analyze the relationship of the two expressions for the angles 14with the three-dimensional general
case bymaking use of the linear development already used in 11 forΔf= 0, keeping the square away from the
calculated integral and considering only the plain result:
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Thewe get the expression (16) in [34]
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Weare aware that the factorπ introduces an extra rotation around the plane andwewish that further workwill
be dedicated in order to getmore insight into the theme of the connectionwith three-dimensional geometrical
picture of this configuration in laser-plasma interaction.

4. Conclusions

Wehave analyzed both analytically andwith three-dimensional PIC simulations the dynamics of the post-
accelerationmechanismwhich allow attosecond electron bunches emitted by a few-cycle laser irradiated droplet
to be injected into the laser pulse and therefore be accelerated up toMeV energies.We have found how the
ultrarelativistic regime can be applied for intensities starting from the threshold of 5× 1019 W cm−2, for a few-
cycle laser pulse. A new integrationmethod has been applied and verified for the determination of the gain in
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energy by the electron bunch in the laser pulsewave. Three-dimensional and focus effects have been taken into
account.We have demonstrated that acceleration in vacuum is possible while the bunches are copropagating
with the pulse, and that the predicted energy gain agrees well with PIC simulations for intensities for which the
cluster remains opaque, or satisfying the empirical criterion in [11].We have also calculated the saturation
distance at which the bunches acquire their peak and cutoff energies respectively. All numerical results have been
successfully comparedwith post-simulation tracking. The transient region provides a useful interpolation for
determining the linear gain function in the case of the few-cycle laser pulse. This interpolation has been carried
on analytically and then efficiently compared to the local decomposition of the spectrum in a newway, which
settles an immediate connectionwith themore traditional approach presented in appendix B. Itmust be noticed
that there is some elasticity and that initial conditions are chosen according to equation (10). However, thefinal
resultsmust be calculated for phase-locked bunches and under the choice of the corresponding parameters on
the ultrarelativistic cone theMacLaurin developmentmust be used for the fit of the peak energies (see
equation (11)). This result actually yields the required linearfit, as itmust be inferred from simulation tracking
findings.

Bothmathematical and numerical calculations are consistent with the previously published experimental
results in [16], for the special case of I= 5× 1019W cm−2 intensity. It is important to notice that for thefirst
time afinite integral calculation is carried on for determining themean—or peak—energy an electron bunch co-
propagating in vacuum, overcoming the difficulties presented by the fully parametric treatment in [2].

Former analytical results have been confirmed and extended to the three-dimensional case, with the
significant advantage that the integral in equation (10) can be solvedwith proper initial conditions coming from
the plasmonic energy of the produced electron cloud, and therefore elevated to a systematic calculation of the
energy gain. All results are shown to be dependent on the electric field of the laser, as well as the number of
emitted bunches. It is interesting to askwhether there are fundamental limits to scaling this acceleration scheme
to higher intensities, which are currently restricted to themaximum reachable intensity with the present laser
technology, namely 1022 W cm−2. To test this, it is clear that further experimental and simulationwork is needed
within the context of this novel scheme.
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AppendixA. Interpretation of the integral in equation (10)

The integration in 10 actually shows twomathematical problems. First of all, the definition itself does not allow
to state in principle how rigorous is themeasure of the integral provided by the phase differential df in 10with
respect to the usualmeasure used in relativistic quantum theory of fields (see appendix B). In order to define the
level ofmathematical approximation necessary for rescaling the functional integral theory from the typical
quantum theory treatment down to the current case,many existingmathematical definitions for a randomly
oscillating variable have been properly analysed. The basis for the choice of a stochastic variable as a substitute
for the phasef is to givemore significance to the x-axis in 10 according to a realistic representation of the laser
phase following the semiclassical approximation. The stochastic functional integral has been chosen to be the
best solution for the case of a chaotic behaviour for the particles in a bunch of electrons absorbing energy
through interactionwith a laser pulse in vacuum. The physicalmechanismwhich can be recognized as the
application of dynamical systems studies to ultraintense laser-plasma interaction is presented in [35] and gets the
name of stochastic heating, a phenomenon that has been recently individuated under the experimental point of
view as theway of transferring thework load by the electric field down to the electron. This kind of process in
principle allows formany solutions inside the realmof stochastic differential equations, thus corresponding to
the action of any random laser phase variation on electrons finding themselves in the path of a laserwave.
However, this choice is left too general in [35], especially when oblique incidence is brought tomaximum
incidence angle, like in our case, and only themainwave is present. Then, the situation is the one of a single laser
pulse interacting along its full duration. Therefore the performance selected here is in principle themaximum

16

Phys. Scr. 96 (2021) 055603 LDi Lucchio and PGibbon



result for a rapidly varying phase; this allows us to choose a selected path for the stochastic approximation
where the gain is stable. The reduction, with respect to variational principles already applied in stochastic
approximations [36], of theN degrees of freedomdown to one possible choice for the values ofΔf giving
the exact experimental gainwasmade possible by adapting the functional expressions actually exposed in
appendix B. Furthermore, the lagrangian densitymust be left generic, so that the Euler–Lagrange principle only
serves as a confirmation that thefieldf can be nevertheless extracted, provided that useful conditions are chosen
for theWiener function variation dW(AppendixD). This way, we neglect the number of situations that can be
representedmathematically speaking by a stochastic process individuation of any proper kind. In particular, we
try to neglect a specific expression for the composition of functions in the functional integral andwe choose the
general form in appendix B. The quasi-particle approximation actually supports the extraction of information
for single electrons outside the bunch as it is stated in appendix C. The secondmathematical problemwould be
constituted by the validity of the choice of the extremes of the integral as a unique path between a initial time and
afinal time provided that the time flow is relativistic andwe are choosing a geometricalmeasure on the cone.Of
course in this case the quantumpicture is neglected, also because thematerial in appendix B is exhaustive
enough. In other words, we should not consider correlation between states and therefore themeasure in 10 is not
a quantummeasure. The laser phase can therefore be conceptually described bymeans of well-known solutions
of the differential diffusion equations: themost complete transportationmechanism for the functional integral
to the problemof a dynamical systemwas examined in [37]. Both the originalmathematical and physical
treatments as they are resumed in classic books about stochastic differentials and relevant stochastic differential
equations are explained bymeans of a special choice in the appendixD,where the passage to the relativistic
regime is verywell found.

Appendix B.Methodological notes for the functional integral

In this sectionwe aim at justifying the functional approach leading to 10 , by referring to an already known
mathematical context. The original literature will be therefore cited outside the relevant physical context because
we are interested in the generalmethod.We proceed as following, ignoring the details and keeping everything as
rigorous a possible, butwithout specifying the actual fields and variables involved, in order not to superposewith
the text.While keeping the analogywith the formalismof the classical field theory, we recall the same gauge
choice in [5], including the condition∂μA

μwhich allows for the equivalence between the classical Lagrangian
and thefield theory picture. That allows for the light cone invariant to be chosen in a suitable way, keeping into
the classical electrodynamics picture as it is done in [5]. However, this analogy is not enough to our case aswe
have to take into account a dependence of the integration variablef on proper time. A proper electromagnetic
field development as a function of the invariant variables is found in [38]. Themathematical analogy between the
definition of functional derivative and functional integral proposed in [38] and ours is based on the dependence
of the vector potential on the phase, which in turn is a function of the proper time. It will be shown the usefulness
of the definition of functional and functional derivative in this specific context, being the specific approach
allowing, in principle, for any envelope variation function. This way, the proper envelope can be chosen at a later
time, when the path to explicit calculation has been simplified. In addition to that, the slowly varying envelope
can be stated independently, allowing for a specific choice of the laser waveform. The following treatment is thus
in principle separated by the pulse approximation, which is flexible, but not from the polarization choice. The
polarization choice can affect significantly the gain calculation andwill not be analyzed here. The general Euler–
Lagrange equation generalized tofield theory expressed in relativistic covariant notation reads [38]
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Here, the four-dimensional gradient waswritten as usual as∂Φr/∂x
μ≡∂μΦ= (∂t,∇)Φr. ThefieldsΦr (not to

be confusedwith the laser phasef) can have several independent degrees of freedomΦr, r= 1,....,N. The
variational principle in terms of the Lagrangian reads
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Wechoose as gaugefields the electromagnetic fields. The argument x represents all space coordinatesΦ(x0, x1,
x2, x3).

The Lagrange densitymay depend on the field functionΦ, on its time derivative F , and also on the gradient
∇Φ. In the Lorentz gauge∂μA

μ= 0.Here we adopt theCoulomb gauge∇ · A= 0, and according to the
functional derivative rules δ∇Φ=∇δΦ= 0. This gauge requires that the three-dimensional divergence vanishes
∇ · A= 0. ThefieldΦ(x) is assumed to be localized at the space-time point x= {x0, x1, x2, x3}. The condition
uμu

μ=−1 shows that the velocity vector is time-like, namely, the charged particle lies within the light cone and
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positive energy trajectories are separated from the negative energy trajectories. Therefore, if the particle starts
gaining energy, it will remain on the light cone surfacewhich ensures the positive gain is not perturbed by any
deviation. This picture is symmetric under space reversal, but not under time reversal.

The generalmethods offield quantization inmore advanced form can be found in various textbooks on
relativistic quantummechanics and/orfield theory. For thefield theoretical foundations of photon-electron
interaction in vacuum the readermaywant to explore the purely quantum electrodynamics approach in[39].
Themathematical treatment presented here has been directed towards applications- as it is widely addressed in
[40]- with a focus on canonical integrationmethods.With respect to the discrete systems of pointmasses , we
turn to the study offields by associating to every point in ourfinite region of spacewith a continuousfield
variable, which isΦ(x, t). The dynamical variables of the theory are now the values of thefieldsΦ at each point of
space at a proper time instant. The Lagrange function now is a functional of the field, i.e. amapping froma space
of functions to the real numbers. FollowingHamilton’s principle we define the variation of a functional F[Φ(x)]
as

òd d
d
d

F = F + F - F =
F

F x
F F F d x

F
: . B23[ ] [ ] [ ] [ ]

( )
( )

The variational principle is equivalent to the Euler–Lagrange equations. From the already knownquantization
procedure of the electromagnetic field- just as an example, one can see related treatments in [38, 41], the
canonical variables can be chosen to be the vector potentialsA andP from the ordinaryMaxwell equations.
However, itmust be reminded that the vector potential is not a true physical quantity, namely, it cannot be
measured as well as the electric andmagnetic field. In electromagnetic field quantization procedures it is
convenient to set∇ · A=∇ · P= 0. Subsequently, also divE= 0 can be set, in order to eliminatemathematically
all the inhomogeneities in the electric field geometrical setup. The condition divE= 0 is a supplementary
condition, which allows for avoidingfield canonical variables commutation issues. Both divE and divH - where
H is themagnetic field- are constants ofmotion and therefore can be set equal to zero in every point of space. The
resulting integration procedure associatedwith the variational principle and theMaxwell equations yields
the equality

t
t

t= -
¶
¶
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where only the time integration is necessary. TheGaussian focus existence can be allowed by creating a
divergence-free vector potential, to be substituted explicitly to the vector potential A in the expression
equation (B3). The representation chosen byHartemann [5] reads
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As long as h(t) is the temporal formof the laserwave, we can consider the phasef= κμx
μ(τ) for its analytical

expression and by a simple substitutionwe can apply the instrument of the functional derivative to the
divergence free vector potential. TheCoulomb gauge allows to select the spatial focus terms out of the derivation
process and the correspondence h(t)→ h(f(τ)) leads to a straightforward application of the chain rule in the
differentiation procedure. For the purpose of strict calculation, we use a not entirely rigorous approach inwhich
the functional derivative is defined according to its properties as amathematical operation. Let F[f] be a
functional, i.e. amapping froma normed linear space of functions = F Î M x x:{ ( ) } to thefield of real or
complex numbers,  F M: or . The object δF[f]/δf(x) tells how the value of the functional changes if the
functionf(x) is changed at the point x. Thus the functional derivative itself is an ordinary function depending on
x. As its defining relationwe use
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Most of the rules of ordinary differential calculus still apply to functional derivative. In the above text we have
made use of the chain rule for a functionf(x) localized at a point y
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which in the case of an ordinary function g(f) takes the form
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AppendixC. Fourier transformmethods for energy and bunch analysis

If we consider two signals x(t), y(t) andwe suppose they are periodic with period T , the Fourier Transform for

the product ò t t t= -
-¥

+¥
z t y t x y t d( ) ( ) ( ) ( ) leads to a divergent integral. In this peculiar case,in order to

avoid singularities, a new kind of convolution can be defined, named ‘cycle-stationary convolution’ [42, 43]:
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where one of the two initial functions can be reversed accorded to time. The difference (t− τ) can be shifted
according to the initial point of definition of the functions, and τ is the new integration variable; if τ> 0, the
upper extreme of the integral would actually be shifted to the right. Ifα< t< β, withα,β real numbers , the
integralmust be calculated between t− β and t− α and solved by parts. The convolution of a periodic function
with a rectangular function (merge of step functions) yields an ascending rampwith a saturation point,
depending on the choice of extremes. In our treatment this choice is due to a bond coming from the transient
formof the resolution of the integral. The cross-correlation of the convolution of two functions reads
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and y∗(t) is the complex coniugate of y(t). In the case of the function =y t Arect t

T( )( ) the complex conjugate is

also real, and coincides with the function itself. The expression inC2 is valid for τ> 0. The analogous expression
for τ< 0 is not analyzed here, because of the physical constant on the phase shift imposed by the analytical
resolution of integral 10. Generally speaking, integratingwith respect to t would be of little physicalmeaning in
every transient regime, since time dependence is not known. Thereforewewill not examine any superposition in
the phase space integration, even in the transient regime calculation. The present workmakes use of the purely
mathematical adaptation from the original Arect(), due to the advantageous statistical properties of this operator
and and its form,which is tunable on afinite impulse duration.

The statistical filtering of the buncheswasmade on an assumption of uniformity inside the bunches’
oscillations. Themodulation inC2 is in principle not a realistic function for an experimentally-like constructed
bunch or series of bunches, but allows us to interpret the negligible statistical deviation inside the bunch
structure in amore precise way than just assuming a small transverse direction in a gaussian form. It also
represents a good fit for the shape of the ascending ramp infigure 4. In the case of a Arect() function shape,
filtering easily reduces tomean andmax calculations in the first order approach. For amore complete time series
approach, one can refer to [42, 43].More insight in the dedicated field is out of the scope of this work. In [44–46],
first principles for any kind of ultrashort bunch detection have been set up. In thefiltered bunches the frequency
ω has been compared bymeans of standard deviation coefficients calculated in a straightforwardway, so as to
separate the coherent part from the incoherent, complex overall spectrum. The incoherent part represents the
easiest subset to befit, since a real analysis is sufficient. In the following treatment, there are the basic formulas
for the dedicated approximation:
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where

k is thewave number,λ is thewavelength and F(λ) the longitudinal form factor. In turn, F(λ)depends

on the three-dimensional charge distribution S(z). Thewave-vector orientationwith respect to the angle of
measurement is not due in this treatment, as long as a correct spatial filtering of the bunches has been carried on.

The shape of the correct electron density distribution has been selected among the two tolerance angles aside
the central direction of emission. This is possible bymeans of both a spatial and temporal filtering, which can be
madewithin themathematical approximation directly on the particle vectors in python language. The process is
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dynamical, namely, the size of the arrays can be squashedwhilemaintaining the bunches’ profile. This is done at
least until the ascending energy ramp isfinished. After that, the coherent part of the spectrumbegins to apply
and,more correctly, an imaginary numbers’ spectrum analysis should be carried on.However, the statistics are
much heavier here and slight oscillations with the presentmethod should be taken into account. A specific
treatment for separating two statistical regimes is out of the scope of the present study.

All of the computational data can bemade available from the 3DPIC simulations, through a purely
electromagnetic calculation, andmost of thefindings have been presented in [16]. In particular, the two terms
adding up in the F(λ) expression represents, respectively, the incoherent and coherent part of the spectrum,
proportional respectively to the total number of particlesN andN(N− 1)∝N2. In particular, if index 1 refers to
a reference particle, Ei(t)= E1(t+Δti) is the electric field of the other particles in the bunch affecting the so-
called quasi particle travelling and gaining energy in the electric field. This picture does not change in the case in
which the electric field actually crosses the trajectory, becausewe are interested in the frequency spectrum.

A complete calculation of the spectrum after the saturation length has been reached should include also
current evaluation outside of the transient treatment and therefore has been avoided here. Tracking itself would
be not enough to ensure an overall description, since so far only a description based on the phase is in agreement
with invariance on the cone surfacewhere energy is acquired. Therefore only the coherent part of the spectrum
was introduced in the post-processing calculations, isolating the frequency in the single bunches after themean
and standard deviation.

AppendixD. Stochasticalmethods for the conceptualization of laser phase

The aimof this section is to justify the choice of the functional integral extremes as being them functions instead
of variables, as it happens in equation (10). The consequence is that the connection between the functional
integrals in dynamicalmany-body systems and in relativistic quantumfield theory isfinally explained. Themost
importantmathematical assumptionswhich fit the evolution of the phasemake it possible to express this
variable as a result of calculations in analogywith the stochastic integral solution derived fromordinary
stochastic differential equations. Our stochastic variable can be, at least in principle, expressed as an exponential
result in time. This approach has been examined thoroughly in all kind of practical applications where a classic
time interval is defined. The transportation to a relativistic integral solution for the stochastic evolution of the
phase of the ultraintense laser is quite new. The relevantmathematical formalism is brought forward towards the
end of the appendix, where quadrivectorial notation is applied. In this sectionwe recall the general differential
stochastic equation of the Ito type

s= + =dX t b X t t dt X t t dW t X t x, , , , D10 0( ) ( ( ) ) ( ( ) ) ( ) ( ) ( )

where Î t t x, m
0 0 , b andσ arematrices in t whose existence and unicity can be determined bymean of the

mathematical tools, as it can be found in the relevant literature [47–49]. The general integral solution can be
read as
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The quantityW(t) represents the one-dimensionalWiener process whose average is zero andwhose
stopping time is related to the discretization of several instantsΔtj= tj+1− tj setting the limit of Dmax tj j close
to thefinal time of the process τ. Analogously, theWiener process gives the Riemann-Stieltjesmeasure of the
integralΔWj=W(tj+1)−W(tj). Those instants named as tj can be put in succession as long as we consider this
sequence to be tending to a limit of the process time τ constituting the stopping time of the dynamical system. In
our case, the stopping time can bemade coincident with the few-cycle laser duration as long as we consider
acquiring energy from the laser to be a stochastic process whose random average can be simplified by reducing
the formulaD2 to itsfirst term after considering themean quantities in the bunch and stating<W(t)>= 0.
Consequently the average value of the stochastic integral in dW(s)must be calculated for our case by assuming
that the finite stopping time duration. This is compatible with the track analysis that has been performed. The
white noiseW(t) cannot be directly comparedwith small variations inmean energies and in cutoff energies in
both tables 2 and 3 because such a detailed connectionwould require a separate researchworkwhich is out of the
scope of the present study. However, as long as wemake the stochastic variableX(t) be the necessaryfit for the
phase variablef(τ) seen as a function of the proper time by themany particles of the bunch, the parallelismwith
the variation of the results in the gain calculations in equation (10) appears to be perfectly feasible. Due to the
special nature of our calculation for the energy gain, which is based on average quantities and on collective effects
fromdense correlation phenomena, it is to be expected to get a small error for the fit of the theoretical formula
within 5%, compatibly with the assumed tolerance in aWiener process. In addition to that, it is interesting to
consider that the higher extreme of the integral calculation in equation (10) is the phase difference and therefore
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the initial condition for the equation (D2) can be neglected in our effective calculation. By assuming the phase
difference seen by a phase-locked bunch is a randomprocess within the ultrarelativistic cone associatedwith the
very high energy transfer process, we set a limit to the structure of the bunch and an effective connectionwith the
quasiparticle theory as presented in appendix A. The quantum field theory approach in [38] can be integrated by
assuming that the integration variable extremes x can be substituted by an arbitrary kind of defined variable.
Therefore also the variable of integration can become a function, under the proper assumptions. It is
straightforward to notice that the functional integral -first presented in early seventies in [50] has not been
invented in a relativistic context, but it is transported to relativistic theory here in this treatment. The passage to
the proper time is assumed to bemade continuous by the definition for the functional integral as an ultimate
limit to sumover small definite time intervals, as it happens for the nonrelativistic treatment. In order to express
the formulaD2 as a one-dimensional solution, wemustmake use of a proper approximation. The following can
be applied to a gaussian few-cycle laser pulse, being not in contrast with the assumptionsmade in the paper. The
definition of the laser phasef(τ) can be physically related to the diffusion equation known as the solution of the
differential stochastical approximation of the systemof equations.

n l= - + = dX t X t i b ibdW t X C1 2 , 0 , D32( ) ( )[ ( )] ( ) ( )

The solution of equation (D3) yields, bymeans of the Ito formula

n l n> > = +b X t i t ibW t0, 0, exp . D4( ) ( ) ( )

where thefirst term is deterministic and the second term represents aWiener process. The solution can be
reconstructed as an integral in the Riemann formwhere the secondmember of the finite equation remains
undefined:
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Herebywe assume that the definition of the second term in equation (D5) is exact and not necessary, as long
aswe are going to neglect theWiener process part , after stating that analogous conditions for the expectation
values observable quantities with respect to the previous treatment are still valid. Oncewe have got rid of the
Wiener process bymeans of averaging, it is easy to recognize the usual phase approximation as a function of the
laser frequency. As in our treatment we are dealingwith amonochromatic wave, no further decomposition for
the phase is necessary and the differential variation of the phase can be easily considered as in equation (9a).
Thereforewe end upwith the integral expression in 10. Regarding the point of view of analogous laser-plasma
physical processes including stochastic representation for the gain of energy, it is important tomention that the
work by [35], already briefly presented in the text, includes a connection between the amount of stochastic
heating occurring in a laser standingwave and the angle of incidence for the laser light illumination. In our
context, wewant to achieve complete hitting of the target in the focus and therefore we can assume that the
incidence angle ismaximumand that we can consider the full period of the laser as the necessary time-in the rest
frame- to let the stochastic process occur.

Appendix E. Focusing effects on the analytical expressions andfirst comparison to
paraxial approximation

In this sectionwe examine the issues relative to themodelization of the focus effects and the insertion of the
correspondingmathematical expressions in the analytical formulas.We recall the procedure that has been
followed in [34] in order to get an expression for the paraxial propagation of the vector potential of a linearly
polarizedGaussian pulsewith elliptical focus.We assume a similar exponential behaviour for the optical
focalization region description andwe proceed to the integration for the vector potential amplitude. The central
laser wavelength is represented in themathematical calculation by k0.
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Wealsomake use of theCoulomb gauge condition∇ · A= 0, andwe assume it is verified. A similar choice is
done, under slightly different approximations, in [51], where a different context is used, always in the frame of
the relativistic laser ponderomotive regime.We can easily reconstruct the relevant procedure through the
following definitions and straightforward calculations
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Bymeans of reconstructing the derivative d

dx

dx

dt
and by considering for td

dt
the initial condition γ= 1 , we can

make the assumption that the rise into the rampup to themonotonic energy is due to the presence of higher
terms in the following development (MacLaurin expansions in powers of τ″)
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Of course we can assume relatively easily that γ2 and higher powers of γ are still equal to 1 if we preserve the
Lorentz gauge condition. Thereforewe can take the expression forAμ:
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and then insert in theA[G[(f)(τ)] expression the following contributing term (reduction to thewavefront where
t= τ)
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Thereforewe reconnect for this special case to the paraxial approximation.
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