001     890808
005     20240610121024.0
024 7 _ |a 10.1103/PhysRevD.103.034016
|2 doi
024 7 _ |a 0556-2821
|2 ISSN
024 7 _ |a 1089-4918
|2 ISSN
024 7 _ |a 1538-4500
|2 ISSN
024 7 _ |a 1550-2368
|2 ISSN
024 7 _ |a 1550-7998
|2 ISSN
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a 2128/27652
|2 Handle
024 7 _ |a altmetric:95735350
|2 altmetric
024 7 _ |a WOS:000620346700003
|2 WOS
037 _ _ |a FZJ-2021-01216
082 _ _ |a 530
100 1 _ |a Baru, V.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Insights into Z b ( 10610 ) and Z b ( 10650 ) from dipion transitions from ϒ ( 10860 )
260 _ _ |a Melville, NY
|c 2021
|b Inst.812068
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2021-02-22
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2021-02-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618925142_19083
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The dipion transitions Υ(10860)→π+π−Υ(nS) (n=1, 2, 3) are studied in the framework of a unitary and analytic coupled-channel formalism previously developed for analyzing experimental data on the bottomoniumlike states Zb(10610) and Zb(10650) [Phys. Rev. D 98, 074023 (2018)] and predicting the properties of their spin partners [Phys. Rev. D 99, 094013 (2019)]. In this work we use a relatively simple but realistic version of this approach, where the scattering and production amplitudes are constructed employing only short-ranged interactions between the open- and hidden-flavor channels consistent with the constraints from heavy quark spin symmetry, for an extended analysis of the experimental line shapes. In particular, the transitions from the Υ(10860) to the final states ππhb(mP) (m=1, 2) and πB(*)¯B∗ already studied before, are now augmented by the Υ(10860)→π+π−Υ(nS) final states (n=1, 2, 3). This is achieved by employing dispersion theory to account for the final state interaction of the ππ subsystem including its coupling to the K¯K channel. Fits to the two-dimensional Dalitz plots for the π+π−Υ final states were performed. Two real subtraction constants are adjusted to achieve the best description of the Dalitz plot for each Υ(nS) (n=1, 2, 3) while all the parameters related to the properties of the Zbs are kept fixed from the previous study. A good overall description of the data for all Υ(10860)→π+π−Υ(nS) channels achieved in this work provides additional strong support for the molecular interpretation of the Zb states.
536 _ _ |a 511 - Enabling Computational- Data-Intensive Science and Engineering (POF4-511)
|0 G:(DE-HGF)POF4-511
|c POF4-511
|f POF IV
|x 0
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
542 _ _ |i 2021-02-22
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Epelbaum, E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Filin, A. A.
|0 0000-0002-7603-451X
|b 2
700 1 _ |a Hanhart, Christoph
|0 P:(DE-Juel1)131182
|b 3
|u fzj
700 1 _ |a Mizuk, R. V.
|0 0000-0002-2209-6969
|b 4
700 1 _ |a Nefediev, A. V.
|0 P:(DE-Juel1)131268
|b 5
700 1 _ |a Ropertz, S.
|0 P:(DE-HGF)0
|b 6
773 1 8 |a 10.1103/physrevd.103.034016
|b American Physical Society (APS)
|d 2021-02-22
|n 3
|p 034016
|3 journal-article
|2 Crossref
|t Physical Review D
|v 103
|y 2021
|x 2470-0010
773 _ _ |a 10.1103/PhysRevD.103.034016
|g Vol. 103, no. 3, p. 034016
|0 PERI:(DE-600)2844732-3
|n 3
|p 034016
|t Physical review / D
|v 103
|y 2021
|x 2470-0010
856 4 _ |u https://juser.fz-juelich.de/record/890808/files/PhysRevD.103.034016.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890808
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131182
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131268
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
981 _ _ |a I:(DE-Juel1)IAS-4-20090406
999 C 5 |a 10.1103/PhysRevLett.108.122001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.252001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.252002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.019901
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.242001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.142001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.80.031104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.88.074026
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.222002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ppnp.2016.11.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2016.11.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ppnp.2017.08.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.90.015004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.90.015003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ppnp.2019.04.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2020.05.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.116.212001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.85.054011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/S0217751X15300021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physletb.2018.01.039
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.84.054010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epja/i2011-11120-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.84.056015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physletb.2011.09.039
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0954-3899/39/10/105001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.84.054002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.86.014004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0954-3899/40/1/015003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP04(2012)056
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.91.076001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6471/ab2678
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.98.074023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.99.094013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.115.202001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.93.074031
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.92.036002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP02(2016)009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjc/s10052-018-6416-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.95.034022
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physletb.2019.134851
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.89.053015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.83.074004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjc/s10052-012-1860-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjc/s2004-01591-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.90.036004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s100520000303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP06(2012)063
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.93.034030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s002880050344
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.91.072003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/ptep/ptaa104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevC.101.015206
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21