Home > Publications database > Insights into Z b ( 10610 ) and Z b ( 10650 ) from dipion transitions from ϒ ( 10860 ) > print |
001 | 890808 | ||
005 | 20240610121024.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevD.103.034016 |2 doi |
024 | 7 | _ | |a 0556-2821 |2 ISSN |
024 | 7 | _ | |a 1089-4918 |2 ISSN |
024 | 7 | _ | |a 1538-4500 |2 ISSN |
024 | 7 | _ | |a 1550-2368 |2 ISSN |
024 | 7 | _ | |a 1550-7998 |2 ISSN |
024 | 7 | _ | |a 2470-0010 |2 ISSN |
024 | 7 | _ | |a 2470-0029 |2 ISSN |
024 | 7 | _ | |a 2128/27652 |2 Handle |
024 | 7 | _ | |a altmetric:95735350 |2 altmetric |
024 | 7 | _ | |a WOS:000620346700003 |2 WOS |
037 | _ | _ | |a FZJ-2021-01216 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Baru, V. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Insights into Z b ( 10610 ) and Z b ( 10650 ) from dipion transitions from ϒ ( 10860 ) |
260 | _ | _ | |a Melville, NY |c 2021 |b Inst.812068 |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2021-02-22 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2021-02-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1618925142_19083 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The dipion transitions Υ(10860)→π+π−Υ(nS) (n=1, 2, 3) are studied in the framework of a unitary and analytic coupled-channel formalism previously developed for analyzing experimental data on the bottomoniumlike states Zb(10610) and Zb(10650) [Phys. Rev. D 98, 074023 (2018)] and predicting the properties of their spin partners [Phys. Rev. D 99, 094013 (2019)]. In this work we use a relatively simple but realistic version of this approach, where the scattering and production amplitudes are constructed employing only short-ranged interactions between the open- and hidden-flavor channels consistent with the constraints from heavy quark spin symmetry, for an extended analysis of the experimental line shapes. In particular, the transitions from the Υ(10860) to the final states ππhb(mP) (m=1, 2) and πB(*)¯B∗ already studied before, are now augmented by the Υ(10860)→π+π−Υ(nS) final states (n=1, 2, 3). This is achieved by employing dispersion theory to account for the final state interaction of the ππ subsystem including its coupling to the K¯K channel. Fits to the two-dimensional Dalitz plots for the π+π−Υ final states were performed. Two real subtraction constants are adjusted to achieve the best description of the Dalitz plot for each Υ(nS) (n=1, 2, 3) while all the parameters related to the properties of the Zbs are kept fixed from the previous study. A good overall description of the data for all Υ(10860)→π+π−Υ(nS) channels achieved in this work provides additional strong support for the molecular interpretation of the Zb states. |
536 | _ | _ | |a 511 - Enabling Computational- Data-Intensive Science and Engineering (POF4-511) |0 G:(DE-HGF)POF4-511 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076) |0 G:(GEPRIS)196253076 |c 196253076 |x 1 |
542 | _ | _ | |i 2021-02-22 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Epelbaum, E. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Filin, A. A. |0 0000-0002-7603-451X |b 2 |
700 | 1 | _ | |a Hanhart, Christoph |0 P:(DE-Juel1)131182 |b 3 |u fzj |
700 | 1 | _ | |a Mizuk, R. V. |0 0000-0002-2209-6969 |b 4 |
700 | 1 | _ | |a Nefediev, A. V. |0 P:(DE-Juel1)131268 |b 5 |
700 | 1 | _ | |a Ropertz, S. |0 P:(DE-HGF)0 |b 6 |
773 | 1 | 8 | |a 10.1103/physrevd.103.034016 |b American Physical Society (APS) |d 2021-02-22 |n 3 |p 034016 |3 journal-article |2 Crossref |t Physical Review D |v 103 |y 2021 |x 2470-0010 |
773 | _ | _ | |a 10.1103/PhysRevD.103.034016 |g Vol. 103, no. 3, p. 034016 |0 PERI:(DE-600)2844732-3 |n 3 |p 034016 |t Physical review / D |v 103 |y 2021 |x 2470-0010 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890808/files/PhysRevD.103.034016.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:890808 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131182 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131268 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-4-20090406 |k IAS-4 |l Theorie der Starken Wechselwirkung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IKP-3-20111104 |k IKP-3 |l Theorie der starken Wechselwirkung |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IKP-3-20111104 |
981 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
999 | C | 5 | |a 10.1103/PhysRevLett.108.122001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.110.252001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.110.252002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.019901 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.242001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.100.142001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.80.031104 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.88.074026 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.112.222002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ppnp.2016.11.003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physrep.2016.11.002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ppnp.2017.08.003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.90.015004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.90.015003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ppnp.2019.04.003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physrep.2020.05.001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.116.212001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.85.054011 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1142/S0217751X15300021 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2018.01.039 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.84.054010 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/i2011-11120-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.84.056015 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2011.09.039 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0954-3899/39/10/105001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.84.054002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.014004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0954-3899/40/1/015003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP04(2012)056 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.91.076001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6471/ab2678 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.98.074023 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.99.094013 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.115.202001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.93.074031 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.92.036002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP02(2016)009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjc/s10052-018-6416-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.95.034022 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2019.134851 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.89.053015 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.83.074004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjc/s10052-012-1860-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjc/s2004-01591-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.90.036004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s100520000303 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP06(2012)063 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.93.034030 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s002880050344 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.91.072003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1093/ptep/ptaa104 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.101.015206 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|