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The dipion transitions ϒð10860Þ → πþπ−ϒðnSÞ (n ¼ 1, 2, 3) are studied in the framework of a unitary
and analytic coupled-channel formalism previously developed for analyzing experimental data on the
bottomoniumlike states Zbð10610Þ and Zbð10650Þ [Phys. Rev. D 98, 074023 (2018)] and predicting the
properties of their spin partners [Phys. Rev. D 99, 094013 (2019)]. In this work we use a relatively simple but
realistic version of this approach, where the scattering and production amplitudes are constructed employing
only short-ranged interactions between the open- and hidden-flavor channels consistent with the constraints
from heavy quark spin symmetry, for an extended analysis of the experimental line shapes. In particular, the
transitions from the ϒð10860Þ to the final states ππhbðmPÞ (m ¼ 1, 2) and πBð�ÞB̄� already studied before,
are now augmented by theϒð10860Þ → πþπ−ϒðnSÞ final states (n ¼ 1, 2, 3). This is achieved by employing
dispersion theory to account for the final state interaction of the ππ subsystem including its coupling to the
KK̄ channel. Fits to the two-dimensional Dalitz plots for the πþπ−ϒ final states were performed. Two real
subtraction constants are adjusted to achieve the best description of the Dalitz plot for each ϒðnSÞ (n ¼ 1, 2,
3) while all the parameters related to the properties of the Zbs are kept fixed from the previous study. A good
overall description of the data for all ϒð10860Þ → πþπ−ϒðnSÞ channels achieved in this work provides
additional strong support for the molecular interpretation of the Zb states.

DOI: 10.1103/PhysRevD.103.034016

I. INTRODUCTION

The spectroscopy of hadronic states containing heavy
quarks remains one of the fastest developing and most
intriguing branches of strong interaction studies. Many new
states have been discovered in the spectrum of charmonium
and bottomonium which do not fit into the quark model
scheme and qualify as exotic states. For example, the states
Z�
b ð10610Þ, Z�

b ð10650Þ [1], Z�
c ð3900Þ [2,3], Z�

c ð4020Þ [4],
and Z�ð4430Þ [5–8] are charged and decay into final states
containing a heavy quark and its antiquark. Since the
production of this pair of heavy quarks in the decay is

highly suppressed in QCD, it must have been present in the
wave functions of the states and as such the ZQ states
cannot be conventional Q̄Q (with Q denoting a heavy
quark) mesons as they must contain at least four quarks.
The interested reader can find a comprehensive overview of
the current experimental and theoretical status of the exotic
hadrons with heavy quarks in dedicated review papers, for
example, in Refs. [9–15].
The Z�

b ð10610Þ and Z�
b ð10650Þ bottomoniumlike states

(in what follows often referred to as Zb and Z0
b, respec-

tively) are ideally suited for both experimental and theo-
retical studies since there exist two resonances in the same
JPC ¼ 1þ− channel [16] split by only about 40 MeV which
are simultaneously seen in several modes. Specifically, the
Belle Collaboration observed them as distinct peaks (i) in
the invariant mass distributions of the π�ϒðnSÞ (n¼1, 2, 3)
and π�hbðmPÞ (m ¼ 1, 2) subsystems in dipion transitions
from the vector bottomonium ϒð10860Þ [1] and (ii) in the
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elastic BB̄�1 and B�B̄� channels in the decays ϒð10860Þ →
πBð�ÞB̄� [17,18]. The two most prominent explanations for
the Zbs claimed to be consistent with the data are provided
by a tetraquark model [19–21] and a hadronic molecule
picture [22–31]. A review of the sum rules approach to the
exotic states with heavy quarks and relevant references on
the subject can be found in a recent review [32]. It should
be noted that a particularly close location of the Zbs to the
thresholds of the BB̄� and B�B̄� channels, which in addition
are the most dominant decay modes for them, provides a
strong hint in favor of their molecular interpretation.
Both the Z�

b ð10610Þ and Z�
b ð10650Þ contain a heavy bb̄

pair, so it is commonly accepted that the heavy-quark spin
symmetry (HQSS) should be realized to high accuracy in
these systems and indeed, HQSS is able to explain naturally

the interference pattern in the inelastic channels Zð0Þ
b →

πϒðnSÞ and Zð0Þ
b → πhbðmPÞ [22]. In Ref. [33], an effective

field theory (EFT) approach to the Zb states consistent with
HQSS and chiral symmetry was developed to perform a
combined analysis of the experimental data in the channels

ϒð10860Þ → πZð0Þ
b → πBð�ÞB̄�;

ϒð10860Þ → πZð0Þ
b → ππhbðmPÞ; m ¼ 1; 2: ð1Þ

The information on the branching fractions in the
transitions ϒð10860Þ → πZð0Þ

b → ππϒðnSÞ (n ¼ 1, 2, 3)
was also used, but no analysis of the line shapes in these
channels was performed for the reasons explained below.
A fairly good description of the data was achieved in
different fitting schemes described in detail in Ref. [33].
As expected, the experimental data on the Zbs are fully
consistent with HQSS, since symmetry violating terms in
the effective hadronic potential are argued to play a minor
role [33]. In Ref. [34], the approach was extended to predict
in a parameter-free way the properties of the spin partner
states of the Zbs, the WbJs (J ¼ 0, 1, 2).
The one-pion exchange (OPE) in the bottomoniumlike

systems under consideration was a special concern of the
quoted works [33,34], and it was concluded to play an
important role for the Zbs and WbJs. Indeed, the poles of
the Zbs and WbJs that were originally classified as virtual
states in the pionless framework moved above the nearby
elastic thresholds to become resonances, as an effect of the
OPE. Meanwhile, the conclusion that all these states are
hadronic molecules, based on a decent description of the
data, follows already from the scheme with purely contact
interactions in the Bð�ÞB̄� system (scheme A, in the notation
of Ref. [33], yields χ2=Ndof ≈ 1.23). Note also that this
fitting scheme provides results identical to those obtained

with the help of an analytical parametrization for the line
shapes derived previously in Refs. [35,36].
Not all experimental information used in the aforemen-

tioned combined analysis could be considered on equal
footing. Indeed, while the line shapes in the πhbðmPÞ and
Bð�ÞB̄� channels could be fitted directly, as discussed above,
only the total branchings for the πϒ final states were used
in the fit. The signal in the latter channels contains a
significant nonresonant contribution that depends on the
invariant mass of the two-pion system, so that the ampli-
tude analysis has to be multidimensional. This analysis is in
the spotlight of the present work. In particular, we general-
ize the approach developed in Ref. [33] to incorporate
coupled-channel effects from the ππ–KK̄ interactions in the
final state using a model-independent dispersive approach.
Then we perform maximum likelihood fits to the Dalitz
plots of the reactions ϒð10860Þ → ππϒðnSÞ (n ¼ 1, 2, 3).
To keep consistency with the data in the πhbðmPÞ and
Bð�ÞB̄� channels, we directly employ the inelastic produc-
tion amplitudes obtained in Ref. [33] for scheme A as input
for the present research. Since the focus of the present study
is on the development of the dispersive treatment of the
final state interactions (FSI), we resort to a simple pionless
formulation, as provided by scheme A, while effects from
the OPE will be included in future studies. Thus in this
study we focus on the following goals:

(i) A development of a dispersive approach to the
ϒð10860Þ → ππϒðnSÞ transitions and a systematic
account for the effects from the ππ FSI including the
coupling to theKK̄ channel.While for theϒð2SÞ and,
especially, ϒð3SÞ in the final state the ππ–KK̄
coupling is expected to play amarginal role, it should
be important for the ϒð1SÞ channel near the KK̄
threshold (see, for example, Ref. [37]). This effect
can be included in amodel-independent way using an
Omnès matrix constructed from high accuracy deter-
minations of the ππ andKK̄ scattering amplitudes as
well as from the Bs decay data [38,39].

(ii) Our focus is on the inclusion of the FSI while
keeping the full complexity of the Zb dynamics,
so we consider two production mechanisms
for the transitions ϒð10860Þ→ππϒðnSÞ, namely
(a) through the contact operators with two real
parameters and (b) through B-meson production
assuming pointlike vertices with the subsequent
B-meson interactions in the final state, that is,
via the process ϒð10860Þ → Bð�ÞB̄�π → ππϒðnSÞ.
Both mechanisms are supplemented with the ππ FSI.
Note that in Ref. [40] also a possible impact of the
box-diagram mechanism was studied, which is not
included here. The underlying rationale is that in the
ϒð10860Þ decays the Zb states can go on shell and
should by far dominate the effects from the Bð�ÞB�
intermediate states. The corresponding imaginary
parts in the production amplitudes are taken into

1A properly normalized C-odd combination of the BB̄� and
B̄B� components is understood.
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account explicitly in this work. As a consequence,
only two real subtraction constants defined in the
mechanism (a) are sufficient to dispersively recon-
struct the amplitude, which is insensitive to the high-
energy integration range. This is unlike to Ref. [41],
where two complex coefficients were utilized in a
related study of the dipion transitions in the char-
monium sector.

(iii) The Dalitz plots for the ϒð10860Þ → ππϒðnSÞ
transitions contain nontrivial information about the
Zbs—these states can be clearly seen in the πϒðnSÞ
invariant mass distributions and have imprint also
on the ππ spectrum. Thus we analyze the two-
dimensional Dalitz plots to check whether the results
for the Zbs from our previous analyses are consistent
with them.

The paper is organized as follows. In Sec. II we briefly
introduce the coupled-channel approach suggested and
used in Refs. [33,34]. In Sec. III a dispersive approach
to the decay amplitude is developed to take into account the
ππ interaction in the final state. Section IV is devoted to
the data analysis for the reactions ϒð10860Þ → ππϒðnSÞ
(n ¼ 1, 2, 3). Our conclusions are discussed in Sec. V.
Appendices A and B provide some technical details of the
dispersive approach used in this work, including a dis-
cussion of the anomalous contributions to the amplitude.

II. COUPLED-CHANNEL APPROACH

In this section we briefly recall some essentials of
the coupled-channel approach previously developed in
Ref. [33] to perform a combined analysis of the data for
the bottomoniumlike states Zbð10610Þ and Zbð10650Þ. The
channels with hidden bottom (labelled by latin letters),

i ¼ πϒð1SÞ; πϒð2SÞ; πϒð3SÞ;
πhbð1PÞ; πhbð2PÞ; ð2Þ

are referred to as inelastic ones while the open-bottom
channels (labeled by greek letters),

α ¼ BB̄�; B�B̄�; ð3Þ

are denoted as elastic ones. The interaction potential
between different channels takes the form of a matrix,

Vpionless ¼
� vαβðp; p0Þ vαiðp; kiÞ
vjβðk0j; p0Þ vjiðk0j; kiÞ

�
: ð4Þ

The main purpose of the present work is to incorporate
into the current coupled-channel scheme of Ref. [33] the
pion interaction in the ππϒðnSÞ final states. Consequently,
although the OPE was argued in Ref. [33] to provide an
important contribution to the elastic potential, its analytic
structure is quite complicated and had the largest impact on

the BB̄� channel. Accordingly, it will be neglected in the
current study, especially since existing data can be quite
well described within the purely contact scheme A of
Ref. [33]. Thus, in what follows, we stick to this scheme
and assume that the leading left-hand cut contributions to
the amplitude for the ππ FSI are generated by the Zbs poles
and the Bð�ÞB̄� cuts which are taken into account in the
present approach. To be specific, in this work we employ
the following approximations:

(i) Only Oðp0Þ contact interactions are included in the
elastic channels, so that the vαβðp; p0Þ from Eq. (4)
takes the form

vðp; p0Þ ¼
�
Cd Cf
Cf Cd

�
; ð5Þ

whereCd andCf are independent low-energy constants;
(ii) Elastic-to-inelastic transition potentials are parame-

trized via coupling constants as

viαðki; pÞ ¼ vαiðp; kiÞ ¼ giαk
li
i ; ð6Þ

where ki and li are the momentum and the angular
momentum in the ith inelastic channel, respectively.
The inelastic momentum is calculated as

ki ¼
1

2M
λ1=2ðM2; m2

Hi
; m2

hi
Þ; ð7Þ

where mHi
ðmhiÞ is the mass of the heavy (light)

meson in this channel, M is the total energy of the
system, and λðm2

1; m
2
2; m

2
3Þ is the standard Källen

triangle function,

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð8Þ

The coupling constants giα are constrained by
HQSS:

g½πϒðnSÞ�½B�B̄��
g½πϒðnSÞ�½BB̄��

¼ −1; n ¼ 1; 2; 3;

g½πhbðmPÞ�½B�B̄��
g½πhbðmPÞ�½BB̄��

¼ 1; m ¼ 1; 2: ð9Þ

Therefore, as in Ref. [33], they will be quoted only
for the BB̄� channel in the form

gϒðnSÞ ≡ g½πϒðnSÞ�½BB̄��;

ghbðmPÞ ≡ g½πhbðmPÞ�½BB̄��: ð10Þ

(iii) Following the arguments from Refs. [35,36], direct
interactions in the inelastic channels are neglected,
vjiðk0j; kiÞ ¼ 0.
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(iv) The long-ranged part of the pion exchange between
the Bð�Þ mesons is not considered.2

As a result of these approximations, the effective elastic-
to-elastic channel transition potential takes the form

Veff
αβ ðM;p;p0Þ¼vαβðp;p0Þ−i

X
i

mHi
mhi

2πM
giαgiβk

2liþ1
i ; ð11Þ

where the second term on the right-hand side describes the
transitions through the intermediate inelastic channels; the
real parts of the inelastic loops are absorbed into the low-
energy constants Cd and Cf.
Then, the Lippmann-Schwinger equation for the

ϒð10860Þ decaying into open-bottom final states can be
written as [33]

UαðM;pÞ

¼FαðM;pÞ−
X
β

Z
UβðM;qÞGβðM;qÞVeff

βαðM;q;pÞ d3q
ð2πÞ3 ;

ð12Þ

whereUαðM;pÞ denotes the physical production amplitude
of the αth elastic channel from a pointlike S-wave source,
and FBB̄� ðM;pÞ¼−FB�B̄� ðM;pÞ¼1 as dictated by HQSS.
The Green’s function for a two-heavy-meson intermediate
state reads

GαðM;qÞ¼ 2μα
q2−p2

α− i0
; p2

α≡2μαðM−mα
thÞ; ð13Þ

where mα
th stands for the αth elastic threshold and μα is

the reduced mass in this channel. Other components of the
multichannel amplitude responsible for production of the
inelastic channels in the final state can be obtained from
UαðM;pÞ algebraically, which is a consequence of the
omitted direct interactions in the inelastic channels. In

particular, for the ith inelastic channel in the final state
we have

UiðM;kiÞ

¼−
X
α

Z
d3q
ð2πÞ3UαðM;qÞGαðM;qÞvαiðM;q;kiÞ; ð14Þ

where the momentum ki is defined in Eq. (7) above. It has
to be noticed that the Born amplitudes FiðM;pÞ coming
from the inelastic sources were neglected in Eq. (14).
This is justified for the πhbðmPÞ channels, where the data
are dominated by the Zbð10610Þ and Zbð10650Þ poles
emerging from the Bð�ÞB̄� dynamics. The corresponding
line shapes were included into the combined fit performed
in Ref. [33]. On the contrary, in the heavy-spin-conserving
πϒðnSÞ channels, the Born term needs to be kept and the
ππ interaction in the final state has to be included. How this
can be done in a model-independent way will be discussed
in detail below.
The one-dimensional distributions for the differential

widths in the elastic (Bð�ÞB̄�) and inelastic [πhbðmPÞ]
channels used in Ref. [33] read

dΓα

dM
¼ 1

3

2mBð�Þ2mB�2mϒð10860Þ
32π3m2

ϒð10860Þ
p�
πpαjUαj2;

dΓi

dM
¼ 1

3

2mhi2mHi
2mϒð10860Þ

32π3m2
ϒð10860Þ

p�
πpijUij2; ð15Þ

respectively, where p�
π is the three-momentum of the

spectator pion in the rest frame of the πϒð10860Þ
and pαðpiÞ is the three-momentum in the αth elastic
(ith inelastic) channel in the rest frame of the B�B̄ð�Þ
(πϒðnSÞ=πhbðmPÞ) system. Then, the total branching
fraction in an elastic or inelastic channel x is defined as

Brx ¼
ΓxP

2
α¼1 Γα þ

P
5
i¼1 Γi

; ð16Þ

where

(a) (b) (c) (d)

FIG. 1. The line shapes in the elastic channels BB̄� and B�B̄� and inelastic channels πhbðmPÞ (m ¼ 1, 2) provided by scheme A from
Ref. [33]. Experimental data from Refs. [1,18] are shown as dots with error bars.

2As was demonstrated in Ref. [33], the short-range central part
of the OPE can be absorbed effectively into the low-energy
constants Cd and Cf.
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Γx ¼
Z

Mmax

Mmin

�
dΓx

dM

�
dM; ð17Þ

and the integral in M covers the entire kinematically
allowed region for the considered channel x.
The line shapes obtained in the fitting scheme described

above are presented in Fig. 1, and the parameters of the fit
are listed in Table I. As was explained above, only the total
branchings of the πϒ channels were included in the fits.
In what follows, the left-hand cut structure of the

multichannel production amplitude Ui (i ¼ πϒðnSÞ) from
Eq. (14), obtained in the framework of the contact scheme
A, will be used as input for a dispersive reconstruction of
the ππ FSI.

III. FINAL STATE INTERACTION

A. Kinematics of the reaction

In this subsection we introduce the kinematics of
the decay ϒð10860ÞðpiÞ → ϒðnSÞðpfÞπþðp1Þπ−ðp2Þ
with n ¼ 1, 2, 3. Following a standard approach to such
reactions, we built the amplitude Mðs; t; uÞ in a crossed
channel, ϒðpiÞ þ ϒ0ðpfÞ → πðp1Þ þ πðp2Þ, and define the
Mandelstam invariants accordingly,

s¼ðpiþpfÞ2; t¼ðpfþp1Þ2; u¼ðpfþp2Þ2; ð18Þ

with

p2
i ¼ m2

i ; p2
f ¼ m2

f; p2
1 ¼ p2

2 ¼ m2
π; ð19Þ

where mπ , mi, and mf are the masses of the pion,
ϒð10860Þ≡ ϒ, and ϒðnSÞ≡ ϒ0, respectively. Thus,

sþ tþ u ¼ m2
i þm2

f þ 2m2
π: ð20Þ

In order to proceed, we resort to the kinematics in the
center-of-mass frame of the two pions in the final state, so
that (z≡ cos θ, where θ is the angle between the three
momenta p1 and pf),

tðs; zÞ ¼ 1

2
ðm2

i þm2
f þ 2m2

π − sÞ þ 1

2
kðsÞz;

uðs; zÞ ¼ 1

2
ðm2

i þm2
f þ 2m2

π − sÞ − 1

2
kðsÞz; ð21Þ

where

kðsÞ ¼ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

i ; m
2
fÞλðs;m2

π; m2
πÞ

q
; ð22Þ

with the function λ defined in Eq. (8) above. Consequently,
z can be expressed in terms of t and u as

z ¼ t − u
kðsÞ : ð23Þ

Since the production amplitude for the process
ϒð10860Þ → πþπ−ϒðnSÞ has the form3

Mfull ¼ Mðs; t; uÞεϒð10860Þ · ε�ϒðnSÞ;

the double differential production rate can be written as

d2Br
dsdt

¼ N jMðs; t; uÞj2; ð24Þ

where the overall normalization constantN will be fitted to
the data.

B. Dispersive approach to the ππ-KK̄ FSI

In this subsection we introduce the meson-meson inter-
action in the final state. The partial wave decomposition of
the amplitude Mðs; t; uÞ reads

Mðs; t; uÞ ¼
X
l

MlðsÞPlðzÞ; ð25Þ

where PlðzÞ are the Legendre polynomials and the sum
runs over all relevant angular momenta l. We start from the
amplitude Mðs; t; uÞ projected onto the ππS wave,

M0ðsÞ ¼
1

2

Z þ1

−1
dzMðs; t; uÞ; ð26Þ

which can be split into two pieces,

M0 ¼ MR
0 þML

0 ; ð27Þ

where the first and second term contain the right- and left-
hand cuts only, respectively. The right-hand cut of the
amplitude MR

0 comes from the FSI while the left-hand cuts
of the amplitude ML

0 are due to the dynamics related to the

TABLE I. The fitted values of the contact terms and inelastic coupling constants for scheme A from Ref. [33]. The cutoff Λ is set to
1 GeV (see the discussion in the quoted paper). For the inelastic coupling constants only the absolute values are presented since physical
quantities are not sensitive to their signs.

Parameter Cd, GeV−2 Cf, GeV−2 jgϒð1SÞj, GeV−2 jgϒð2SÞj, GeV−2 jgϒð3SÞj, GeV−2 jghbð1PÞj, GeV−3 jghbð2PÞj, GeV−3

Value −3.30� 0.11 −0.06� 0.13 0.30� 0.07 1.01� 0.20 1.28� 0.34 3.29� 0.38 11.38� 1.46

3This is correct up to HQSS violating terms and the D-wave
operators for the ϒðnSÞ that do not appear from the mechanisms
considered here.
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Zb states. If the contribution ML
0 is known and only the ππ

channel is considered for the FSI, the full amplitude can be
reconstructed dispersively via the solution of the inhomo-
geneous Omnès problem as (see Ref. [42] for a related
discussion)

M0ðsÞ¼ML
0 ðsÞþ

Ω0ðsÞ
π

Z
∞

4m2
π

ds0
ML

0 ðs0Þsinδðs0Þ
jΩ0ðs0Þjðs0−s− i0Þ ; ð28Þ

where Ω0ðsÞ is the S-wave single-channel Omnès function4

and δ is the ππ S-wave phase shift (see Appendix A for
details). However, given that the energy in the ππ system in
the reaction ϒð10860Þ → ππϒð1SÞ extends to 1.4 GeV,
that is far beyond theKK̄ threshold, the inclusion of theKK̄
component becomes necessary. Generalization of Eq. (28)
to multiple channels is straightforward,

M̂0ðsÞ ¼ M̂L
0 ðsÞþ

Ω̂0ðsÞ
π

Z
∞

4m2
π

ds0
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞM̂L
0 ðs0Þ

s0 − s− i0
:

ð29Þ

Here, the multichannel Omnès matrix obeys the matrix
equation

Ω̂0ðsÞ ¼
1

π

Z
∞

4m2
π

ds0
T̂�ðs0Þσ̂ðsÞΩ̂0ðs0Þ

s0 − s − i0
; ð30Þ

where hats indicate multicomponent objects (vectors
and matrices), σ̂ðsÞ ¼ diagfσπ; σKg is a diagonal matrix
with σPðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sthP=s

p
, and sthP for the threshold in

the corresponding channel (P ¼ π, K). In particular, we
have ML

0 ¼ ð½ML
0 �ππ; ½ML

0 �KKÞT . Furthermore, the S-wave
meson-meson coupled-channel amplitude T̂ can be para-
metrized by the ππ scattering phase shift δðsÞ [43–46] as
well as the absolute value and phase of the ππ → KK̄
transition [45,46], gðsÞ and ψðsÞ, respectively, as

TðsÞ¼
�
Tππ→ππ Tππ→KK̄

TKK̄→ππ TKK̄→KK̄

�
¼
 ηe2iδ−1

2iσπ
geiψ

geiψ ηe2iðψ−δÞ−1
2iσK

!
; ð31Þ

where the inelasticity η is related to g as

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4g2σπσKθðs − 4m2

KÞ
q

: ð32Þ

To get the two-pion FSI amplitude one has to consider
the component ½M̂0ðsÞ�ππ of the vector (29). If the ampli-
tude contains contributions from higher partial waves while

the FSI is taken into account only in the S wave, one can
write

M̂ðs; t; uÞ ¼ M̂no-FSIðt; uÞ

þ Ω̂0ðsÞ
π

Z
∞

4m2
π

ds0
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞM̂L
0 ðs0Þ

s0 − s − i0
;

ð33Þ

where M̂no-FSI ¼ M̂L
0 þ M̂higher is the complete tree level

production amplitude in the t and u channel, not pro-
jected onto partial waves, while the effect of the FSI
is taken into account by the second term in Eq. (33). In
this study, the ππ component of the production amplitude
M̂no-FSI and its S-wave projection M̂L

0 are adopted from
Ref. [33]—see Sec. III C for a detailed discussion.
Meanwhile, the resonance production in the channel
ϒð10860Þ → KK̄ϒðnSÞ which proceeds through the B-
and Bs-meson loops is not considered since no information
about the SUð3Þ partners of the Zb states is available yet.
The dispersive integral in Eq. (33),

Î0ðsÞ≡ 1

π

Z
∞

4m2
π

ds0
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞM̂L
0 ðs0Þ

s0 − s − i0
; ð34Þ

where the lower index indicates l ¼ 0 for the S wave, may
need to be subtracted n times to improve convergence and
to diminish the role played by the large-s region where the
ππ scattering phase is not known well enough. Then, one
arrives at

ÎðnÞ0 ðsÞ ¼ P̂n−1ðsÞ

þ sn

π

Z
∞

4m2
π

ds0

s0n
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞM̂L
0 ðs0Þ

s0 − s − i0
; ð35Þ

where P̂n−1ðsÞ is a polynomial of the order n − 1. If the
amplitude M̂L

0 ðsÞ has both real and imaginary parts, then
the polynomial coefficients are complex numbers.
Meanwhile, if there are good reasons to believe that the
imaginary part of the amplitude ImML

0 ðsÞ is controlled by
well understood physics (see also a related discussion in
Sec. III D below), then the imaginary part of the polynomial
Pn−1ðsÞ can be evaluated exploiting sum rules via

ImP̂n−1ðsÞ ¼
Xn−1
k¼0

sk

π

Z
∞

4m2
π

ds0

s0ðkþ1Þ

× Ω̂−1
0 ðs0ÞT̂ðs0Þσ̂ðs0ÞImM̂L

0 ðs0Þ; ð36Þ

where it was used that the quantity Ω̂−1
0 ðs0ÞT̂ðs0Þσ̂ðs0Þ is

real. This allows one to rewrite Eq. (35) in the form

4We use the standard notation ΩI
l for the Omnès function

where l and I stand for the partial wave and isospin, respectively.
However, since in this work we deal only with isoscalars, the
superscript I ¼ 0 is omitted everywhere.
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ÎðnÞ0 ðsÞ ¼ R̂n−1ðsÞ

þ sn

π

Z
∞

4m2
π

ds0

s0n
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞReM̂L
0 ðs0Þ

s0 − s − i0

þ i
π

Z
∞

4m2
π

ds0
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞImM̂L
0 ðs0Þ

s0 − s − i0
; ð37Þ

where the polynomial Rn−1ðsÞ is real by construction,

R̂n−1ðsÞ ¼ ReP̂n−1ðsÞ; ð38Þ

and so are its coefficients. As discussed below, ImM̂L
0 ðsÞ is

nonvanishing on a finite interval of s only and, accordingly,
the integral in the last line of Eq. (37) does not require any
subtractions.

C. The left-hand cut production amplitude

In order to proceed with the formulas derived in the
previous subsection, we need to specify the form of the

production amplitude Mno-FSI introduced in Eq. (33) and
determine its S-wave projection,

ML
0 ðsÞ ¼

1

2

Z
1

−1
dzMno-FSIðt; uÞ: ð39Þ

Consider, as a preliminary step, a stable-Zb exchange in
the t and u channel. Then, assuming pointlike ϒð0Þ → πZb
vertices, up to an overall constant, one can write the
invariant Born amplitude as

Mstableðt; u;mzÞ ¼
1

t −m2
z
þ 1

u −m2
z
; ð40Þ

where mz is the mass of the mentioned stable Zb particle.
For future convenience we specify this mass as an argument
of the amplitude.
Performing the partial wave projection as introduced

in Eq. (39) for the Born amplitude (40) and using the
prescription m2

i → m2
i þ i0 one arrives at

ML
0;stableðs;mzÞ ¼

8<
:

− 2
κðsÞ
�
log YðsÞþκðsÞ

YðsÞ−κðsÞ þ 2πiθðsa − sÞθðs − sþÞ
�
; ðmf þmπÞ2 < m2

z < 1
2
ðm2

f þm2
i Þ −m2

π;

− 2
κðsÞ
�
log YðsÞþκðsÞ

YðsÞ−κðsÞ þ 2πiθðsa − sÞ
�
; m2

z < ðmf þmπÞ2 < 1
2
ðm2

f þm2
i Þ −m2

π:
ð41Þ

Here

YðsÞ ¼ sþ 2m2
z −m2

i −m2
f − 2m2

π;

κðsÞ ¼ σπðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

i ; m
2
fÞ

q
; ð42Þ

and

sa ¼ 2m2
π þm2

f þm2
i − 2m2

z ð43Þ

is the root of the equation YðsÞ ¼ 0. Furthermore, the
logarithmic branch points s� (also known as anomalous
thresholds) found as the roots of the equation tðs�;
z ¼ �1Þ ¼ m2

z read

s� ¼ ðm2
i −m2

fÞ2
4m2

z

−

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

i ; m
2
π; m2

zÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

f; m
2
π; m2

z

q
Þ
�
2

4m2
z

; ð44Þ

where λ is the triangle function from Eq. (8).
In the regime

ðmf þmπÞ2 < m2
z <

1

2
ðm2

f þm2
i Þ −m2

π; ð45Þ

sþ is real and the anomalous threshold generates only a
phase term which is included in the first formula in Eq. (41)
(see also Ref. [41] for a related discussion). However, for

m2
z < ðmf þmπÞ2 <

1

2
ðm2

f þm2
i Þ −m2

π; ð46Þ

the branch point sþ becomes complex and the dispersive
integral defined in Eq. (37) acquires an additional anoma-
lous contribution calling for an integration along some
complex path (see Appendix B for details). Namely, using
ML

0;anom ¼ −4πi=κ for the anomalous discontinuity, the

integral ÎðnÞ0 ðsÞ from Eq. (37) gets modified as

ÎðnÞ0 ðsÞ → ÎðnÞ0 ðsÞ þ Îanom0 ðs;mzÞ;

where

Îanom0 ðs;mzÞ ¼
sn

2πi

Z
1

0

dx
ζn

dζ
dx

8π

κðζÞ
Ω̂−1

0 ðζÞT̂ðζÞσ̂ðζÞ
ζ − s − i0

; ð47Þ

and ζ ¼ ð1 − xÞsþ þ x4m2
π is the straight-line path

between the two-pion threshold and the branch point of
the logarithm, sþ.
A crucial point of the coupled-channel approach devel-

oped in Ref. [33] is that the resonances Zb are not
introduced as asymptotic states of the theory but appear
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as near-threshold poles of the amplitude fitted to the data.
This implies that, instead of the stable Zb propagator used
in Eq. (40), the inelastic amplitude Ui [i ¼ πϒðnSÞ with
n ¼ 1, 2, 3] from Ref. [33], generated through the B-meson
loops and evaluated as given in Eq. (14), provides the input
for building Mno-FSI and ML

0—see Fig. 2 for its diagram-
matic representation. To proceed, we employ a dispersive
representation for the production amplitude U (to simplify
notations we omit the inelastic index i and thus consider a
particular inelastic final state),

Mno-FSIðt; uÞ ¼ UðtÞ þ UðuÞ

¼ −
1

π

Z
μ2max

μ2min

dμ2ImUðμ2Þ
�

1

t − μ2
þ 1

u − μ2

�

¼
Z

μ2max

μ2min

dμ2ρðμ2ÞMstableðt; u; μÞ; ð48Þ

where we used Eq. (40) and introduced the spectral
function

ρðμ2Þ ¼ −
1

π
ImUðμ2Þ: ð49Þ

The lower limit in the integral above is given by the lowest
relevant threshold which may contribute to the imaginary
part of the amplitude. Unitarity of the production ampli-
tudes Uðμ2Þ requires integration from the lowest inelastic
threshold πϒð1SÞ, although the leading contributions start
from the BB̄�π threshold. The upper limit of integration in
Eq. (48) should formally be infinite, however the use of a
finite momentum regulator in the Lippmann-Schwinger
equations restricts the maximal values of the on-shell
momenta which therefore cannot exceed the cutoff Λ.
Thus in practical calculations μmax ¼ mα

th þ Λ2=2μα is used
[33] [see also Eq. (13) for relevant definitions], and we have
verified that the dispersive representation from Eq. (48)
reproduces UðtÞ þUðuÞ from Ref. [33] quite precisely.
The limit of a stable particle, Eq. (40), is reached from
Eq. (48) for ρðμ2Þ ¼ δðμ2 −m2

zÞ. With the mass distribu-
tion of the Zb states included, the S-wave partial wave
amplitude reads

ML
0 ðsÞ ¼

Z
μ2max

μ2min

dμ2ρðμ2ÞML
0;stableðs; μÞ; ð50Þ

where ML
0;stableðs; μÞ is defined in Eq. (41). Also, the

anomalous term from Eq. (47) has to be weighted with
the spectral function to read

Îanom0 ðsÞ ¼
Z ðmπþmfÞ2

μ2min

dμ2ρðμ2ÞÎanom0 ðs; μÞ: ð51Þ

D. Matching to chiral perturbation theory

Two comments on the convergence of the subtracted
dispersive integral (37) entering Eq. (33) are in order here.
First, as follows from Eqs. (41) and (44), the imaginary part
of the ML

0 ðsÞ may be nonzero only at a finite interval in s
between the logarithmic branch points s− and sþ. Therefore,
the integral from ImML

0 in the last term in Eq. (37) is finite.
The appearance of an imaginary part in the left-hand cut
amplitudes is a specific consequence of the cuts which are
allowed in the process ϒð10860Þ → ππϒðnSÞ, especially
from the Bð�ÞB̄�π intermediate states but also from inelastic
channels. While inelastic cuts can also contribute to similar
decays from theϒð3SÞ andϒð4SÞ, the presence of the cuts in
the elastic channels is only allowed kinematically starting
from the ϒð10860Þ.
The number of subtractions n needed to render the

dispersion integral convergent can be determined by the
high-energy behavior of the function Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0Þ×
ReM̂L

0 ðs0Þ. Since the Omnès matrix is determined by an
unsubtracted dispersion relation (30), each of its elements
behaves as 1=s at high energies—see Ref. [47] for details.
Thus each element of its inverse scales as s. For the
scattering amplitude T̂ in the two-channel case defined in
Eq. (31) it is possible to demonstrate that for T12 ∝ 1=s3=2

at large s [48], T11 and T22 need to scale as 1=s3. Therefore,
we proceed with a conservative estimate that T̂ðsÞ ∝ 1=s3=2

at large s. The left-hand cut amplitude for a stable particle
ML

0;stableðs;mzÞ falls off as logðsÞ=s at large s, however the
full left-hand cut production amplitude M̂L

0 may decrease
slower and is expected to approach a constant. Then, even
without subtractions, one in principle should arrive at a

FIG. 2. Left-hand cuts in the production amplitudeU coming from the BB̄� and B�B̄� scattering in the t (left) and u channel (right). Tαj

denotes the coupled-channel amplitude for the transitions Bð�ÞB̄� → πϒðnSÞ.
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convergent integral. However, to suppress the contribution
of the large-s region, where the details of the ππ interaction
are badly known, in what follows, twice subtracted dis-
persive integrals are considered, and the polynomial in
Eq. (37) takes the form

R1ðsÞ ¼ aþ bs; ð52Þ

with real parameters a and b, as was explained above. In
what follows, it will be shown that one of these constants is
mostly redundant at least for production of ϒðnSÞ with
n ¼ 2 and 3.
It is important to notice that the polynomial R1ðsÞ

parametrizes the amplitude for ϒϒ0ππ at small values of
s and as such can be matched to chiral perturbation theory.
Specifically, in the limit of switching off the final-state
interactions, δðsÞ → 0, gðsÞ → 0 in Eq. (31) and thus
setting Ω0ðsÞ → 1, the subtraction functions must agree
with the chiral amplitudes corresponding to the direct
transitions ϒ → ππϒ0 [49].
If one introduces spin multiplets for heavy-heavy fields,

J ¼ ϒ · σ þ ηb;

then the effective Lagrangian for the contact ϒϒ0ππ and
ϒϒ0KK̄ coupling, at the lowest order in the chiral and
heavy-quark expansions, reads [40,49,50]

Lϒϒ0ΦΦ ¼ c1
2
hJ†J0ihuμuμi þ

c2
2
hJ†J0ihuμuνivμvν þ H:c:;

ð53Þ

where vμ is the four velocity of the heavy quark. The
contribution of the pseudoscalar Goldstone bosons for
the spontaneous breaking of the chiral symmetry can be
parametrized as

uμ ¼ iðu†∂μu − u∂μu†Þ;

u ¼ exp

�
iΦffiffiffi
2

p
f

�
;

Φ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 K0

K− K̄0 − 2ffiffi
6

p η8

1
CCCA; ð54Þ

where f is the pseudo-Goldstone boson decay constant,
fπ ¼ 92.2 MeV and fK ¼ 113.0 MeV. If one makes an
expansion in the (soft) pion momenta qπ, both operators
quoted in Eq. (53) scale as Oðq2πÞ.
Considering an S-wave contribution for the tree-level

amplitudes, M̂χ
0ðsÞ ¼ ðMχ;ππ

0 ðsÞ; 2ffiffi
3

p Mχ;KK
0 ðsÞÞT , one finds

(P ¼ π, K)

Mχ;PP
0 ðsÞ ¼ −

2

f2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϒmϒ0

p �
c1ðs − 2m2

PÞ

þ c2
2

�
sþ q2

�
1 −

σ2PðsÞ
3

�	

; ð55Þ

where q is the three momentum of the final ϒ0 in the rest
frame of the initial ϒ, that is,

q ¼ 1

2mϒ
λ1=2ðm2

ϒ; m
2
ϒ0 ; sÞ: ð56Þ

Up to some small corrections, the amplitude (55) behaves
as a linear polynomial in s. Thus the chiral amplitude at low
energies depends on the two low-energy constants c1 and
c2, which can be treated as fitting parameters instead of a
and b from Eq. (52). This amplitude corresponds to the
contact diagram depicted in Fig. 3(a).
Then, the amplitudeMðs; t; uÞ from Eq. (24), which now

includes the effects from the ππ and KK̄ FSI in the S wave,
takes the form

(d)(c)(b)(a)

FIG. 3. Diagrams contributing to the full amplitude Mðs; t; uÞ from Eq. (57) for the decay ϒ → ππϒ0 [ϒ≡ ϒð10860Þ, ϒ0 ≡ ϒðnSÞ
with n ¼ 1, 2, 3]: (a) the contact diagram; (b) the contact diagram with the ππ and KK̄ FSI; (c) the production amplitudeMno-FSI in the t
and u channels, which contains left-hand cuts from the Zbs generated in a coupled-channel approach of Ref. [33], see also Eq. (48);
(d) same as in (c) but with the ππ FSI.
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Mðs; t; uÞ ¼ Mno-FSIðt; uÞ þ Ω̂0ðsÞðM̂χ;ππ
0 ðsÞ þ ˆ̃I

ð2Þ
0 ðsÞÞ;

ð57Þ

where Mno-FSI is given in Eq. (48) and the ππ component
f11g of the matrix multiplication is implied. The integral
ˆ̃I
ð2Þ
0 is defined as [cf. Eq. (37)]

ˆ̃I
ð2Þ
0 ðsÞ ¼ s2

π

Z
∞

4m2
π

ds0

s02
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞReML
0 ðs0Þ

s0 − s − i0

þ i
π

Z
∞

4m2
π

ds0
Ω̂−1

0 ðs0ÞT̂ðs0Þσ̂ðs0ÞImML
0 ðs0Þ

s0 − s − i0

þ Îanom0 ðsÞ; ð58Þ

where ML
0 ðs0Þ and Îanom0 ðsÞ are given in Eqs. (50) and (51),

respectively.
The diagrams representing different contributions to the

amplitude of Eq. (57) are depicted in Fig. 3: the sum of
Figs. 3(a) and 3(b) corresponds to the term Ω̂0ðsÞM̂χ;ππ

0 ðsÞ,
Fig. 3(c) gives the production amplitudeMno-FSI in the t and
u channels, and Fig. 3(d) describes the contribution of the

last term Ω̂0ðsÞˆ̃Ið2Þ0 ðsÞ.

E. Inclusion of the ππ FSI in the D wave

Generalization of Eq. (57) to the ππ FSI in higher partial
waves is straightforward,

Mðs; t; uÞ ¼ Mno-FSIðt; uÞ
þ
X
l

Ω̂lðsÞðM̂χ;ππ
l ðsÞ þ ˆ̃I

ðnlÞ
l ðsÞÞ; ð59Þ

where the sum runs over all relevant angular momenta l.
More specifically, taking into account the ππ interaction in
the D wave, we write for the amplitude

Mðs; t; uÞ ¼ Mno-FSIðt; uÞ þ Ω̂0ðsÞðM̂χ;ππ
0 ðsÞ þ ˆ̃I

ð2Þ
0 ðsÞÞ

þΩ2ðsÞMχ;ππ
2 ðsÞP2ðzÞ; ð60Þ

where P2ðzÞ is the second-order Legendre polynomial [see
also Eq. (23)], the amplitude Mχ;ππ

2 ðsÞ extracted from the
Lagrangian (53) reads

Mχ;ππ
2 ðsÞ ¼ 2

3f2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϒmϒ0

p
c2q2σ2πðsÞ; ð61Þ

and the diagrams which correspond to the amplitude (61)
coincide with those depicted in Figs. 3(a) and 3(b), however
with no kaons in the loop. No additional parameter is
involved in the amplitude (61), since c2 also enters Eq. (55).
The D-wave Omnès function Ω2ðsÞ in Eq. (61) is calcu-
lated using theD-wave ππ phase shift from Ref. [43] and is
dominated by the f2ð1270Þ resonance contribution. In
general, the amplitude in Eq. (60) should also contain

the dispersive integral Ĩðn2Þ2 ðsÞ, which is however neglected
in the current study. This is motivated by the fact that the
corresponding D-wave contribution from the chiral poly-
nomial in Eq. (61) plays only a very minor role in the fits, as
discussed in Sec. IV. While in this study the main focus is
put on the development of the appropriate formalism and
testing the general consistency of the coupled-channel EFT
approach of Ref. [33] with the data in the ϒð10860Þ →
ππϒðnSÞ decays, we postpone the calculation of Ĩðn2Þ2 ðsÞ to
a future global analysis of all data available in various
channels.

IV. DATA ANALYSIS

With the coupled-channel approach developed in
Ref. [33] and further augmented by the ππ=KK̄ interaction
in the final state, as explained in the previous section, we
are in a position to analyze the data on the decays
ϒð10860Þ → ππϒðnSÞ (n ¼ 1, 2, 3). We use the Belle
data from Ref. [51] and make a maximum likelihood L fit
to the two-dimensional distributions. The minimized func-
tion is defined in a standard way [52],

−2 logL ¼ 2
X
i

�
μi − ni þ ni log

ni
μi

�
; ð62Þ

where the sum runs over all bins in the analyzed two-
dimensional distribution, while ni and μi are the number of
events and the value of the theoretical signal function in the
ith bin, respectively. The signal function is corrected for the
efficiency, and the experimental background distribution is
added. To account for the invariant mass resolution in
M2ðπϒðnSÞÞ, we convolute the theoretical results with the
Gaussian resolution function with σ ¼ 4.3, 2.2, and
1.3 MeV for ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ, respectively.
The effect of the energy resolution for the invariant mass
M2ðππÞ is neglected, since the line shapes for this projec-
tion do not show any sharp peaking structures and are quite
smooth functions ofM2ðππÞ. In each ππϒðnSÞ (n¼1, 2, 3)
channel we fit three parameters: c1, c2, and N , where the
former parameters correspond to the low-energy constants
in the chiral polynomial [see Eq. (55)] while the latter one
provides the overall normalization of the distribution [see
Eq. (24)]. We exclude the region near the Dalitz plot
boundary to minimize the effects of the eþe− center-of-
mass energy spread and the detector resolution.
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The results of the data analysis performed in this work
are presented in Fig. 4 in the form of one-dimensional
projections of the Dalitz plots, namely the invariant mass
distributions M2ðππÞ and M2ðπϒðnSÞÞ. The parameters of
the fits are listed in Table II, where the last column shows
that at least for production of ϒð2SÞ and ϒð3SÞ only a
linear combination of the two constants is relevant. From
Fig. 4 one can see that the developed approach is able to
describe the data in the ππϒ channels rather well. In each

(b)(a)

(d)(c)

(f)(e)

FIG. 4. One-dimensional projections on the M2ðπϒðnSÞÞ (n ¼ 1, 2, 3) (left panel) and M2ðππÞ (right panel) of the fits to the two-
dimensional Dalitz plots, as explained in the text. The blue dashed lines correspond to the results from the t- and u-channel contributions
from Ref. [33] plus experimental background [the latter is however negligible forϒð2SÞ andϒð3SÞ], the black dotted lines correspond to
the same result plus the dispersively reconstructed s-channel contribution of the amplitudes from Ref. [33] (the integral Ĩ0) while the
green lines include in addition the effect from chiral polynomials. The red solid lines represent the full result, where the difference from
the green lines is due to theD-wave contributions. The theoretical results are convoluted with the energy resolution inM2ðπϒðnSÞÞ, see
text. The experimental data are shown as black data points with uncertainties.

TABLE II. Parameters of the fits to the two-dimensional Dalitz
plots obtained in this work. The last column shows the correlation
between the parameters.

Channel c1 × 104 ½GeV−1� c2 × 104 ½GeV−1� Correlation

ππϒð1SÞ 0.322� 0.017 −0.171� 0.020 61%
ππϒð2SÞ 21.1� 0.6 −12.6� 0.5 97%
ππϒð3SÞ −17.8� 3.1 16.1� 3.6 91%
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plot we give several curves showing different contributions
to the total rate. The relative importance of these contri-
butions changes significantly with the mass of the botto-
monium ϒðnSÞ in the final state.

(i) In case of the ππϒð3SÞ channel, given a very limited
phase space available, the distributions are domi-
nated by the t- and u-channel production amplitudes
from Ref. [33] [Mno-FSI in Eq. (33)] that capture the
gross features of the experimental distributions.
Effects from the ππ FSI and chiral polynomials
are marginal individually and, in addition, numeri-
cally cancel each other to a large extent.

(ii) For the ππϒð2SÞ channel, the resulting contribution
from the t- and u-channel amplitudes and the
dispersively reconstructed s-channel FSI are all
important but not sufficient to explain the data.
The missing strength and the energy dependence
comes from the chiral contact terms with the
ππ FSI.

(iii) Finally, in case of the ππϒð1SÞ final state with the
maximal available phase space, the pattern of the
individual contributions is qualitatively similar to
that in the ϒð2SÞ channel. In particular, the t- and
u-channel production amplitudes provide the peak-
ing structures from the Zbs and enhance the small
ππ region in the corresponding line shape. The
dispersive integral I0, enhanced by the ππ–KK̄
FSI from the coupled-channel Omnès function, is
very important. It provides more than half of the
full signal at small M2

πϒðnSÞ and large M2
ππ but also

significantly affects theM2
πϒðnSÞ line shape in the Zbs

area. In addition, I0 drives the shape of the M2
ππ

spectrum near the KK̄ threshold and together with
the t- and u-channel production amplitudes de-
scribes the low M2

ππ region. The residual contribu-
tion comes from chiral contact terms in S wave,
while their effect in D wave is minor.

In Fig. 5 we give the helicity angular distributions,
including individual contributions to it. The anisotropies of
these distributions are largely driven by the higher partial-
wave contributions from the amplitude Mno-FSIðt; uÞ in
Eq. (60)—as usual the partial wave expansion in some

subsystem converges badly, as soon as there is a narrow,
near on shell state in the crossed channel.
While the approach advocated in this study allows

for a quite reasonable quantitative understanding of the
line shapes in the ππϒðnSÞ channels, we would like to
emphasize that the peaks of the Zbs in our results (red
solid curves in Fig. 4), which by construction are consistent
with the experimental Bð�ÞB̄� and πhbðmPÞ (m ¼ 1, 2)
distributions, are not exactly in accord with the data in
the πϒðnSÞ channels. This observation still calls for an
explanation.

V. CONCLUSIONS

In this work we extended the coupled-channel approach
developed previously in Ref. [33] to incorporate the ππ
FSI in the heavy-quark-conserving channels ππϒðnSÞ
(n ¼ 1, 2, 3). Maximum likelihood fits to the two-
dimensional Dalitz plots are performed in each such
channel. Compatibility with the previous analysis of the
line shapes in the Bð�ÞB̄� and πhbðmPÞ (m ¼ 1, 2) channels
is guaranteed by employing the amplitudes obtained in
Ref. [33] as input for the current research.
The ππ FSI was incorporated into the coupled-channel

scheme employing a dispersive approach, in which the left-
hand cut contributions were provided by the previously
found inelastic production amplitudes. Also, it was con-
jectured that the dominating sources of the imaginary parts
of the production amplitudes in the ππϒðnSÞ channels are
fully under control and, therefore, only the real parts of the
complex polynomials were fitted to the data, while their
imaginary parts appeared as actual predictions of the
approach. As a cross-check, it was verified that the fits
did not improve much if the imaginary parts of the chiral
polynomials were also fitted to the data.
The results obtained demonstrate that the extended

approach developed in this work is able to describe the
existing experimental data with a reasonable accuracy.
As expected, the role of the FSI increases with the increase
of the allowed phase space. For example, it is remarkable,
that the results for the ππϒð3SÞ channel, which are
almost completely driven by the production operators from
Ref. [33] with all the parameters fixed from other data, are

(a) (b) (c)

FIG. 5. Helicity angular distributions for the decays ϒð10860Þ → ππϒðnSÞ with n ¼ 1, 2, 3 for the left, middle, and right plot,
respectively. The helicity angle z ¼ cos θ is defined in Eq. (23). For the lines definition see the caption of Fig. 4.
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in a relatively good agreement with the data for the ππ and
πϒð3SÞ projections. Meanwhile, effects from the ππ FSI
in the S-wave are found to be important for the ππϒð2SÞ
and, especially, ππϒð1SÞ channel. In the latter case, also
the KK̄ channel plays a very important role. In particular,
the coupled-channel ππ–KK̄ dynamics shows up as a
very clear dip structure near the KK̄ threshold, which is
consistent with the data. The effect of the D-wave reso-
nance f2ð1270Þ included via the D-wave Omnès function
together with the contact production operators is found to
be very minor for all channels.
Among the open questions to mention is an observation

that the peaks corresponding to the Zbs from the presented
analysis do not completely correspond to the data in the
πϒðnSÞ channels. To address this question a full combined
fit to all measured production and decay channels for the
Zbs should be performed. This lies beyond the scope of the
present research.
We consider the results presented here as an important

step towards a comprehensive combined analysis of the data
in all production and decay channels of the Zbs, which
should in the future also incorporate pion exchanges. Such
an analysis whichwill include the full information contained
in the two-dimensional distributions for the ππϒðnSÞ
channels should provide the most accurate determination
of the parameters of the theory and, as a result, allow us to
make quite precise predictions for the line shapes, pole
positions, decays couplings, and other properties of the yet
unobserved spin partner states WbJ. Such an insight is
expected to provide an important theoretical background for
the searches of the WbJs as well as other near-threshold
exotic candidates in the experiment Belle II and, possibly, in
LHCb and future hadronic experiments.
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APPENDIX A: DISPERSIVE APPROACH
TO THE AMPLITUDE Mðs; t; uÞ

Under the assumption that the right-hand cuts of
the amplitude (26) are only due to the FSI of pion

pairs, one can write for the discontinuity of M0 on
this cut

DiscM0ðsÞ ¼ M0ðsþ iϵÞ −M0ðs − iϵÞ≡Msþ −Ms−

¼ 2iT�ðsÞσπðsÞM0ðsÞθðs − 4m2
πÞ; ðA1Þ

where s is the ππ invariant energy, σπðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

,
and TðsÞ ¼ sin δeiδ=σπðsÞ is the ππ scattering amplitude.
Then the standard way to proceed is to introduce the Omnès
function Ω0ðsÞ which by definition obeys the equation

DiscΩ0ðsÞ ¼ 2iT�ðsÞσπðsÞΩ0ðsÞθðs − 4m2
πÞ

¼ 2i sin δjΩ0jθðs − 4m2
πÞ; ðA2Þ

so that

DiscM0 ¼
DiscΩ0ðsÞ
Ω0ðsÞ

M0: ðA3Þ

Since DiscML
0 ¼ 0 on the unitary cut and, therefore,

DiscM0 ¼ DiscMR
0 , this can be rewritten as

DiscMR
0 ¼ DiscΩ0ðsÞ

Ω0ðsÞ
ðMR

0 þML
0 Þ: ðA4Þ

The solution of Eq. (A4) forMR
0 can be found in the form

MR
0 ¼ Ω0ðsÞGðsÞ; ðA5Þ

where GðsÞ is an unknown function to be restored
dispersively from its discontinuity. To this end we find
from Eq. (A5) that

DiscMR
0 ¼ DiscðΩ0GÞ ¼ Ω0þGþ −Ω0−G−

¼ Ω0þGþ − Ω0−Gþ þΩ0−Gþ − Ω0−G−

¼ GþDiscΩ0 þΩ0−DiscG

¼ DiscΩ0

Ω0

MR
0 þ jΩ0je−iδDiscG; ðA6Þ

where X� ≡ Xðs� iϵÞ for an arbitrary function XðsÞ, and it
was used that

Ω0þ≡Ω0¼ jΩ0jeiδ; Ω0−¼Ω0þe−2iδ ¼ jΩ0je−iδ: ðA7Þ

Equations (A4) and (A7) together yield

DiscGðsÞ ¼ DiscΩ0

jΩ0j2
ML

0 ; ðA8Þ
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and, with the help of Eq. (A2), one finds

DiscGðsÞ
2πi

¼ 1

π

sin δ
jΩ0j

ML
0 : ðA9Þ

Then, the function GðsÞ is restored as

GðsÞ ¼ 1

π

Z
∞

4m2
π

ds0
ML

0 ðs0Þ sin δðs0Þ
jΩ0ðs0Þjðs0 − s − i0Þ ; ðA10Þ

and the solution for the full amplitude takes the form
of Eq. (28).
If the amplitude ML

0 ðsÞ has no imaginary part, it is easy
to verify that the phase of the amplitudeM0 is given by the
ππ scattering phase δ. Indeed, employing the Sokhotski-
Plemelj formula,

1

s0 − s − i0
¼ p:v:

1

s0 − s
þ iπδðs0 − sÞ; ðA11Þ

where p.v. stands for the principal value, one can rewrite
Eq. (28) in the form

M0 ¼ ML
0 e

iδ cos δþ Ω0ðsÞ
π

Z
∞

4m2
π

ds0
ML

0 ðs0Þ sin δðs0Þ
jΩ0ðs0Þjðs0 − sÞ

¼ eiδ
�
ML

0 cos δþ
jΩ0ðsÞj

π

Z
∞

4m2
π

ds0
ML

0 ðs0Þ sin δðs0Þ
jΩ0ðs0Þjðs0 − sÞ

�
;

ðA12Þ

where it was used that

1þ ieiδ sin δ ¼ eiδ cos δ: ðA13Þ

Since the expression in parentheses is real by construction,
the entire phase of the amplitudeM0 is indeed given by the
ππ scattering phase δ.
Generalization of the formalism to the coupled-channel

case is straightforward and amounts to replacing the scalar
objects by matrices, as given in Eq. (29) in Sec. III A.

APPENDIX B: ANOMALOUS CONTRIBUTIONS
TO THE AMPLITUDE ML

0 ðsÞ
Consider a triangle diagram depicted in Fig. 6 with the

ππ interaction in the final state (the ππ vertex is considered
pointlike),

C0ðsÞ ¼
1

iπ2

Z
d4l

1

½l2 −m2
z þ i0�½ðlþ piÞ2 −m2

π þ i0�½ðl − pfÞ2 −m2
π þ i0� ; ðB1Þ

where a shorthand notation is used for the standard
scalar loop function C0ðsÞ≡ C0ðm2

i ; s; m
2
f;m

2
z ; m2

π; m2
πÞ.

The function C0ðsÞ can be calculated through a dispersive
integral,

C0ðsÞ ¼
1

2πi

Z
∞

4m2
π

ds0
DiscC0ðs0Þ

s0 − s
; ðB2Þ

where the discontinuity DiscC0ðsÞ is simply related to the
S-wave projected left-hand cut amplitude (39) for a stable
particle with the mass mz,

ML
0;stableðs;mzÞ ¼

�
−

2

σπðsÞ
�
DiscC0ðsÞ

2πi
: ðB3Þ

Therefore, studies of the amplitude ML
0 ðsÞ amount to

building an analytical form of the discontinuity DiscC0ðsÞ
which reproduces the tabulated triangle loop function C0ðsÞ
in the kinematical regimes of interest through the dispersive
integral (B2).
Typically, the discontinuity of a loop function is related

to an appropriate cut of the corresponding diagram
(see the dotted line in Fig. 6) evaluated with the help
of the Cutkosky rules. For a heavy Zb with the mass
m2

z >
1
2
ðm2

f þm2
i Þ −m2

π , this gives

�
discC0ðsÞ

2πi

	
naive

¼1

2
σπðsÞ

Z
1

−1

dz
t−m2

z

¼−
σπðsÞ
κðsÞ

�
log

YðsÞþκðsÞ
YðsÞ−κðsÞþ2πiθðsa−sÞ

�
;

ðB4Þ

where the analytic continuation m2
i → m2

i þ i0 is implied,
YðsÞ and κðsÞ are defined in Eq. (42), and the point sa in
Eq. (43). The steplike function on the right-hand side of
Eq. (B4) provides an appropriate phase of the logarithm

FIG. 6. The triangle diagram with the π–π FSI described by the
scalar loop function C0 as introduced in Eq. (B1). The dotted line
indicates the cut—see Eq. (B4).
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when YðsÞ ¼ 0 and its argument changes the sign. The
discontinuity (B4) is labeled as naïve since, for m2

z <
1
2
ðm2

f þm2
i Þ −m2

π , the logarithm branch point sþ, defined
in Eq. (44) as the root of the equation YðsÞ þ κðsÞ ¼ 0,
appears on the physical Riemann sheet. As a consequence,
the discontinuity DiscC0ðsÞ acquires an additional anoma-
lous term which does not correspond any more to simply
cutting the triangle diagram in the pion lines—see, for
example, Ref. [53]. Thus, in order to avoid crossing of the
logarithm cut spread between s− and sþ with the unitarity
cut, the contour of integration in the dispersive integral
needs to be deformed. This gives

δCanom
0 ðsÞ ¼ 1

2πi

Z
1

0

dx
dζðxÞ
dx

DiscCanom
0 ðζðxÞÞ

ζðxÞ − s
; ðB5Þ

where

DiscCanom
0 ðζðxÞÞ
2πi

¼ −2πi
σπðζðxÞÞ
κðζðxÞÞ ; ðB6Þ

and the path of integration ζðxÞ in Eq. (B5) can be chosen
straight line,

ζðxÞ ¼ xsth þ ð1 − xÞsþ; ðB7Þ

with sth ¼ 4m2
π for the two-pion threshold and sþ, which

appears on the first sheet.
The interested reader can find a relevant discussion on

an anomalous contribution in Ref. [54]. Here we only
briefly consider the kinematic regimes important for the
problem at hand, as illustrated in Fig. 7. Moreover, we
only focus on the kinematic range with s ≥ sth, which is
relevant for our study. We start from the case of a heavy Zb

with the mass m2
z > 1

2
ðm2

f þm2
i Þ −m2

π , which is also
satisfied for the physical masses of both Zbð10610Þ and
Zbð10650Þ quoted by the Particle Data Group [52]. This
case corresponds to the interval between points A and B in
Fig. 7. The discontinuity in this regime is given by
Eq. (B4), and no anomalous term is required. Also, since
sa is negative, the θ-function term in Eq. (B4) vanishes.
For m2

z ¼ 1
2
ðm2

f þm2
i Þ −m2

π, the branch point sþ hits the
two-pion threshold at the point B and then, for m2

z <
1
2
ðm2

f þm2
i Þ −m2

π , the anomalous contribution emerges,

since sþ enters the first sheet. In the regime ðmf þmπÞ2 <
m2

z <
1
2
ðm2

f þm2
i Þ −m2

π (see the interval between points B
and C in Fig. 7), both sþ and s− are real and the following
relations hold

sth < sþ < s− < sa ≪ ðmi þmfÞ2: ðB8Þ

It is easy to verify that the effect of an anomalous
threshold in this case amounts to simply 2πi terms added
to the logarithm between the threshold and the branch

point sþ. Then the resulting discontinuity reads [cf. the
naïve formula (B4)

�
discC0ðsÞ

2πi

	
m2

iþi0
¼ −

σπðsÞ
κðsÞ

�
log

YðsÞ þ κðsÞ
YðsÞ − κðsÞ

þ 2πiθðs − sþÞθðsa − sÞ
�
; ðB9Þ

and it is straightforward to verify that it indeed restores
the standard loop function C0ðsÞ through the disper-
sion relation (B2). On the other hand, if mz decreases
below the value mf þmπ [that is, m2

z < ðmf þmπÞ2 <
1
2
ðm2

f þm2
i Þ −m2

π] the branch point sþ goes to the complex
plane (see the path between points C to D in Fig. 7) and the
dispersive reconstruction of the integral C0 reads

FIG. 7. The motion of the logarithm branch point sþ (the
dashed red line) defined in Eq. (44) in the s complex plane as the
“running” mass of the Zb varies—see the discussion in the text.
The conventionm2

i → m2
i þ iϵ is employed and, to guide the eye,

some finite tiny ϵ is set. The unitarity cut is shown by black solid
line. It starts at 4m2

π , as indicated by the vertical dotted orange
line. The points marked with the capital latin letters, from A to D,
are added to illustrate the relevant regions for sþ. The figure is
plotted for the masses of the reaction ϒð10860Þ → ϒð3SÞππ.

TABLE III. The critical value of the running mass mz when sþ
emerges in the first sheet but is still real (second column) and
when sþ goes to the complex plane (first column).

Channel mf þmπ , GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðm2

f þm2
i Þ −m2

π

q
, GeV

ππϒð1SÞ 9.5999 10.1833
ππϒð2SÞ 10.1626 10.449
ππϒð3SÞ 10.4948 10.6097
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C0ðsÞ ¼
1

2πi

Z
∞

4m2
π

ds0
DiscC0ðs0Þnaive

s0 − s
þ δCanom

0 ðsÞ; ðB10Þ

where δCanom
0 ðsÞ does not reduce to 2πi any more.

In Table III, we list the critical values of the running mass mz when the anomalous term becomes relevant for the
ππϒðnSÞ (n ¼ 1, 2, 3) channels.
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