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from Y'(10860)

V. Baru ,1’2’3 E. Epelbaum ,4 A. A. Filin ,4 C. Hanhart ,5 R. V. Mizuk ,3 A. V. Nefediev ,3’6 and S. ROpéI‘tZl

'Helmholtz-Institut fiir Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,
Universitdt Bonn, D-53115 Bonn, Germany
*Institute Jfor Theoretical and Experimental Physics NRC “Kurchatov Institute,” Moscow 117218, Russia
*P.N. Lebedev Physical Institute of the Russian Academy of Sciences,
Leninskiy Prospect 53, Moscow 119991, Russia
*Institut fiir Theoretische Physik II, Ruhr-Universitidt Bochum, D-44780 Bochum, Germany
>Institute for Advanced Simulation, Institut fiir Kernphysik and Jiilich Center for Hadron Physics,
Forschungszentrum Jiilich, D-52425 Jiilich, Germany
®Moscow Institute of Physics and Technology, Institutsky lane 9,
Dolgoprudny, Moscow Region 141700, Russia

® (Received 16 December 2020; accepted 14 January 2021; published 22 February 2021)

The dipion transitions Y'(10860) — ztz~Y'(nS) (n = 1, 2, 3) are studied in the framework of a unitary
and analytic coupled-channel formalism previously developed for analyzing experimental data on the
bottomoniumlike states Z,(10610) and Z,(10650) [Phys. Rev. D 98, 074023 (2018)] and predicting the
properties of their spin partners [Phys. Rev. D 99, 094013 (2019)]. In this work we use a relatively simple but
realistic version of this approach, where the scattering and production amplitudes are constructed employing
only short-ranged interactions between the open- and hidden-flavor channels consistent with the constraints
from heavy quark spin symmetry, for an extended analysis of the experimental line shapes. In particular, the
transitions from the Y'(10860) to the final states zzhy, (mP) (m = 1, 2) and zB"*) B* already studied before,
are now augmented by the Y'(10860) — z+z~ Y (nS) final states (n = 1, 2, 3). This is achieved by employing
dispersion theory to account for the final state interaction of the zz subsystem including its coupling to the
KK channel. Fits to the two-dimensional Dalitz plots for the z*z~Y final states were performed. Two real
subtraction constants are adjusted to achieve the best description of the Dalitz plot for each Y'(nS) (n = 1, 2,
3) while all the parameters related to the properties of the Z, s are kept fixed from the previous study. A good
overall description of the data for all Y(10860) — z "z~ Y (nS) channels achieved in this work provides

additional strong support for the molecular interpretation of the Z, states.

DOI: 10.1103/PhysRevD.103.034016

I. INTRODUCTION

The spectroscopy of hadronic states containing heavy
quarks remains one of the fastest developing and most
intriguing branches of strong interaction studies. Many new
states have been discovered in the spectrum of charmonium
and bottomonium which do not fit into the quark model
scheme and qualify as exotic states. For example, the states
Z£(10610), Z£(10650) [1], ZE(3900) [2,3], ZE(4020) [4],
and Z*(4430) [5-8] are charged and decay into final states
containing a heavy quark and its antiquark. Since the
production of this pair of heavy quarks in the decay is
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highly suppressed in QCD, it must have been present in the
wave functions of the states and as such the Z, states
cannot be conventional QQ (with Q denoting a heavy
quark) mesons as they must contain at least four quarks.
The interested reader can find a comprehensive overview of
the current experimental and theoretical status of the exotic
hadrons with heavy quarks in dedicated review papers, for
example, in Refs. [9-15].

The Z;(10610) and Zi(10650) bottomoniumlike states
(in what follows often referred to as Z, and Z}, respec-
tively) are ideally suited for both experimental and theo-
retical studies since there exist two resonances in the same
JPC = 17~ channel [16] split by only about 40 MeV which
are simultaneously seen in several modes. Specifically, the
Belle Collaboration observed them as distinct peaks (i) in
the invariant mass distributions of the z+Y'(nS) (n=1, 2, 3)
and 7t h;,(mP) (m = 1, 2) subsystems in dipion transitions
from the vector bottomonium Y'(10860) [1] and (ii) in the

Published by the American Physical Society
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elastic BB*' and B*B* channels in the decays Y(10860) —
#B®) B* [17,18]. The two most prominent explanations for
the Z,s claimed to be consistent with the data are provided
by a tetraquark model [19-21] and a hadronic molecule
picture [22-31]. A review of the sum rules approach to the
exotic states with heavy quarks and relevant references on
the subject can be found in a recent review [32]. It should
be noted that a particularly close location of the Z,s to the
thresholds of the BB* and B*B* channels, which in addition
are the most dominant decay modes for them, provides a
strong hint in favor of their molecular interpretation.
Both the ZF(10610) and Z;(10650) contain a heavy bb
pair, so it is commonly accepted that the heavy-quark spin
symmetry (HQSS) should be realized to high accuracy in
these systems and indeed, HQSS is able to explain naturally

the interference pattern in the inelastic channels ZIS') -

7Y (nS) and Z(b/) — rhy,(mP) [22]. In Ref. [33], an effective
field theory (EFT) approach to the Z,, states consistent with
HQSS and chiral symmetry was developed to perform a
combined analysis of the experimental data in the channels

Y(10860) — 72\ — zB* B,
Y(10860) — ﬂZg) — arhy,(mP), m=12. (1)

The information on the branching fractions in the
transitions Y'(10860) — #Z — 2z Y(nS) (n =1, 2, 3)
was also used, but no analysis of the line shapes in these
channels was performed for the reasons explained below.
A fairly good description of the data was achieved in
different fitting schemes described in detail in Ref. [33].
As expected, the experimental data on the Z,s are fully
consistent with HQSS, since symmetry violating terms in
the effective hadronic potential are argued to play a minor
role [33]. In Ref. [34], the approach was extended to predict
in a parameter-free way the properties of the spin partner
states of the Z,s, the W,;s (J =0, 1, 2).

The one-pion exchange (OPE) in the bottomoniumlike
systems under consideration was a special concern of the
quoted works [33,34], and it was concluded to play an
important role for the Z,s and W,;s. Indeed, the poles of
the Z,s and W,;s that were originally classified as virtual
states in the pionless framework moved above the nearby
elastic thresholds to become resonances, as an effect of the
OPE. Meanwhile, the conclusion that all these states are
hadronic molecules, based on a decent description of the
data, follows already from the scheme with purely contact
interactions in the B*) B* system (scheme A, in the notation
of Ref. [33], yields y?/Ngos =~ 1.23). Note also that this
fitting scheme provides results identical to those obtained

B 'A properly normalized C-odd combination of the BB* and
BB* components is understood.

with the help of an analytical parametrization for the line
shapes derived previously in Refs. [35,36].

Not all experimental information used in the aforemen-
tioned combined analysis could be considered on equal
footing. Indeed, while the line shapes in the zh,(mP) and
B™) B* channels could be fitted directly, as discussed above,
only the total branchings for the zY final states were used
in the fit. The signal in the latter channels contains a
significant nonresonant contribution that depends on the
invariant mass of the two-pion system, so that the ampli-
tude analysis has to be multidimensional. This analysis is in
the spotlight of the present work. In particular, we general-
ize the approach developed in Ref. [33] to incorporate
coupled-channel effects from the zz—K K interactions in the
final state using a model-independent dispersive approach.
Then we perform maximum likelihood fits to the Dalitz
plots of the reactions Y'(10860) — zz Y (nS) (n = 1, 2, 3).
To keep consistency with the data in the zh,(mP) and
B™B* channels, we directly employ the inelastic produc-
tion amplitudes obtained in Ref. [33] for scheme A as input
for the present research. Since the focus of the present study
is on the development of the dispersive treatment of the
final state interactions (FSI), we resort to a simple pionless
formulation, as provided by scheme A, while effects from
the OPE will be included in future studies. Thus in this
study we focus on the following goals:

(i) A development of a dispersive approach to the
Y(10860) — 7z Y (nS) transitions and a systematic
account for the effects from the zz FSI including the
coupling to the KK channel. While for the Y'(2S) and,
especially, Y(3S) in the final state the zz-KK
coupling is expected to play a marginal role, it should
be important for the Y(1S) channel near the KK
threshold (see, for example, Ref. [37]). This effect
can be included in a model-independent way using an
Omnes matrix constructed from high accuracy deter-
minations of the zz and KK scattering amplitudes as
well as from the B, decay data [38,39].

(i1)) Our focus is on the inclusion of the FSI while
keeping the full complexity of the Z;, dynamics,
so we consider two production mechanisms
for the transitions Y(10860) — zzY (nS), namely
(a) through the contact operators with two real
parameters and (b) through B-meson production
assuming pointlike vertices with the subsequent
B-meson interactions in the final state, that is,
via the process Y(10860) — B B*z — zx Y (nS).
Both mechanisms are supplemented with the 7z FSI.
Note that in Ref. [40] also a possible impact of the
box-diagram mechanism was studied, which is not
included here. The underlying rationale is that in the
Y (10860) decays the Z, states can go on shell and
should by far dominate the effects from the B*) B*
intermediate states. The corresponding imaginary
parts in the production amplitudes are taken into
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account explicitly in this work. As a consequence,
only two real subtraction constants defined in the
mechanism (a) are sufficient to dispersively recon-
struct the amplitude, which is insensitive to the high-
energy integration range. This is unlike to Ref. [41],
where two complex coefficients were utilized in a
related study of the dipion transitions in the char-
monium sector.

(ili) The Dalitz plots for the Y(10860) — zzY(nS)
transitions contain nontrivial information about the
Z,s—these states can be clearly seen in the 7Y (nS)
invariant mass distributions and have imprint also
on the 7z spectrum. Thus we analyze the two-
dimensional Dalitz plots to check whether the results
for the Z,,s from our previous analyses are consistent
with them.

The paper is organized as follows. In Sec. II we briefly
introduce the coupled-channel approach suggested and
used in Refs. [33,34]. In Sec. III a dispersive approach
to the decay amplitude is developed to take into account the
zwr interaction in the final state. Section IV is devoted to
the data analysis for the reactions Y'(10860) — zzY'(nS)
(n =1, 2, 3). Our conclusions are discussed in Sec. V.
Appendices A and B provide some technical details of the
dispersive approach used in this work, including a dis-
cussion of the anomalous contributions to the amplitude.

II. COUPLED-CHANNEL APPROACH

In this section we briefly recall some essentials of
the coupled-channel approach previously developed in
Ref. [33] to perform a combined analysis of the data for
the bottomoniumlike states Z,(10610) and Z, (10650). The
channels with hidden bottom (labelled by latin letters),

i =nY(1S),
why(1P),

7Y (25), zY(3S),
mhy,(2P), (2)

are referred to as inelastic ones while the open-bottom
channels (labeled by greek letters),

a = BB*, B*B*, (3)
are denoted as elastic ones. The interaction potential
between different channels takes the form of a matrix,

pionless U(,/}(p P /) Uai(p ki )
v B (K., p' N AYA 4)
U]ﬂ( j’p) U,/z( iz z)

The main purpose of the present work is to incorporate
into the current coupled-channel scheme of Ref. [33] the
pion interaction in the zzY'(nS) final states. Consequently,
although the OPE was argued in Ref. [33] to provide an
important contribution to the elastic potential, its analytic
structure is quite complicated and had the largest impact on

the BB* channel. Accordingly, it will be neglected in the
current study, especially since existing data can be quite
well described within the purely contact scheme A of
Ref. [33]. Thus, in what follows, we stick to this scheme
and assume that the leading left-hand cut contributions to
the amplitude for the zz FSI are generated by the Z, s poles
and the B B* cuts which are taken into account in the
present approach. To be specific, in this work we employ
the following approximations:
(i) Only O(p°) contact interactions are included in the
elastic channels, so that the v,4(p. p’) from Eq. (4)
takes the form

o= o)

where C,; and C; are independent low-energy constants;
(i1) Elastic-to-inelastic transition potentials are parame-
trized via coupling constants as

Ui(l(ki’ p) = vai(p’ kl) = giak?7 (6)

where k; and /; are the momentum and the angular
momentum in the ith inelastic channel, respectively.
The inelastic momentum is calculated as

1
_ll/Z(Mz’mIlei’m%i)’ (7)

k.:
o2M

where mpy (m), ) is the mass of the heavy (light)
meson in this channel, M is the total energy of the
system, and A(m,,m%,m3) is the standard Killen
triangle function,

Mx,y,z) =x*+y* + 22 —2xy —2xz—2yz.  (8)

The coupling constants g;, are constrained by

HQSS:
IexSNBEBY _ _y 0.3
9wy (nS))[BB"]
GnhymPNEE) _ g o) ©)

[ﬂhb mP)|[BB*]

Therefore, as in Ref. [33], they will be quoted only
for the BB* channel in the form

9x(nS) = 9[zY(nS)|[BB*]

Ihy(mP) = Ylah,(mP)|[BB]- (10)

(iii) Following the arguments from Refs. [35,36], direct
interactions in the inelastic channels are neglected,
Uji(k;" kl) =0.
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The line shapes in the elastic channels BB* and B*B* and inelastic channels 7/, (mP) (m = 1, 2) provided by scheme A from

Ref. [33]. Experimental data from Refs. [1,18] are shown as dots with error bars.

(iv) The long-ranged part of the pion exchange between
the B*) mesons is not considered.”
As a result of these approximations, the effective elastic-
to-elastic channel transition potential takes the form

my my,
V(M. p,p') =vas(p.P') =iy ;;Mhlgiagiﬂk?li+l’ (11)
l

where the second term on the right-hand side describes the
transitions through the intermediate inelastic channels; the
real parts of the inelastic loops are absorbed into the low-
energy constants C,; and Cy.

Then, the Lippmann-Schwinger equation for the
Y(10860) decaying into open-bottom final states can be
written as [33]

Ua(M, p)
0.9) =3 [ UGy Vi .00 5 5
(12

where U, (M, p) denotes the physical production amplitude
of the ath elastic channel from a pointlike S-wave source,
and Fgz-(M,p)=—Fg 3 (M,p)=1 as dictated by HQSS.
The Green’s function for a two-heavy-meson intermediate
state reads

zﬂ{l(M_m%)’ (13)

2
N’ p(I:

where my, stands for the ath elastic threshold and u, is
the reduced mass in this channel. Other components of the
multichannel amplitude responsible for production of the
inelastic channels in the final state can be obtained from
U,(M, p) algebraically, which is a consequence of the
omitted direct interactions in the inelastic channels. In

*As was demonstrated in Ref. [33], the short-range central part
of the OPE can be absorbed effectively into the low-energy
constants C; and Cy.

particular, for the ith inelastic channel in the final state
we have

Ui(M. k;)

3
-3 [ v, 010G M0 k). (14

where the momentum ; is defined in Eq. (7) above. It has
to be noticed that the Born amplitudes F;(M, p) coming
from the inelastic sources were neglected in Eq. (14).
This is justified for the zh,(mP) channels, where the data
are dominated by the Z,(10610) and Z,(10650) poles
emerging from the B*)B* dynamics. The corresponding
line shapes were included into the combined fit performed
in Ref. [33]. On the contrary, in the heavy-spin-conserving
7Y (nS) channels, the Born term needs to be kept and the
7z interaction in the final state has to be included. How this
can be done in a model-independent way will be discussed
in detail below.

The one-dimensional distributions for the differential
widths in the elastic (B"*)B*) and inelastic [zh,(mP)]
channels used in Ref. [33] read

dU,  12mpe2mp-2my(oge0) 2

am 3 325m PrPalUal’.
MY (10860)

dr;  12my,2my 2myose0)

dM ~ 3 325m2 ( >p7zpi|Ui|2’ (15)
Ty (10860)

respectively, where p% is the three-momentum of the
spectator pion in the rest frame of the zY(10860)
and p,(p;) is the three-momentum in the ath elastic
(ith inelastic) channel in the rest frame of the B*B®*)
(2 Y (nS)/zwh,(mP)) system. Then, the total branching

fraction in an elastic or inelastic channel x is defined as

I,
2 T+,

Br, =

X

(16)

where
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TABLE L.

The fitted values of the contact terms and inelastic coupling constants for scheme A from Ref. [33]. The cutoff A is set to

1 GeV (see the discussion in the quoted paper). For the inelastic coupling constants only the absolute values are presented since physical

quantities are not sensitive to their signs.

Parameter ~ C,, GeV™2 Cr, GeV2  gyasl GeV™2  gypsl GeV2  gyis)l GeV2 gy, el GeV™? gy, op)l, GeV™?
Value -330£0.11 -0.06 +0.13 0.30 £0.07 1.01 £0.20 1.28 +0.34 3.29 +0.38 11.38 & 1.46
Mmi\x dI_‘ 1
r, - ) au, (17) K(s) = \Jals. .o, m2om2), (22)
Mmin dM §

and the integral in M covers the entire kinematically
allowed region for the considered channel x.

The line shapes obtained in the fitting scheme described
above are presented in Fig. 1, and the parameters of the fit
are listed in Table I. As was explained above, only the total
branchings of the #Y channels were included in the fits.

In what follows, the left-hand cut structure of the
multichannel production amplitude U; (i = zY'(nS)) from
Eq. (14), obtained in the framework of the contact scheme
A, will be used as input for a dispersive reconstruction of
the zz FSL

III. FINAL STATE INTERACTION

A. Kinematics of the reaction

In this subsection we introduce the kinematics of
the decay Y(10860)(p;) = Y (nS)(ps)z™(p1)z~(p2)
with n =1, 2, 3. Following a standard approach to such
reactions, we built the amplitude M(s, 7, u) in a crossed
channel, Y'(p;) + Y'(p;) = z(p1) + z(p,), and define the
Mandelstam invariants accordingly,
u= (Pf*‘Pz)z’ (18)

s=(pi+ps)?* t=(ps+p1)

with
pp=mj;,  pi=p;=m; (19)

2_ 2
pi = my,

where m,, m;, and m, are the masses of the pion,
Y(10860) = Y, and Y'(nS) = Y, respectively. Thus,

s+t 4+ u=mi+mi+2mz. (20)

In order to proceed, we resort to the kinematics in the
center-of-mass frame of the two pions in the final state, so
that (z =cos @, where 0 is the angle between the three
momenta p; and py),

1 2 2 2 1
1(s,2) :E(mi + my + 2m; — s) —I—Ek(s)z,
1 1
u(s,z) :5(m12+mj2£+2m,2,—s)—5k(s)z, (21)

where

with the function A defined in Eq. (8) above. Consequently,
z can be expressed in terms of ¢ and u as

zzth—S;t. (23)

Since the production amplitude for the process
Y(10860) — zt 2~ Y(nS) has the form’
MM = M(s, 1, U)Ey(10860) €Y (us)»

the double differential production rate can be written as

=N|M(s,t,u)?, (24)

where the overall normalization constant A/ will be fitted to
the data.

B. Dispersive approach to the zz-KK FSI

In this subsection we introduce the meson-meson inter-
action in the final state. The partial wave decomposition of
the amplitude M (s, ¢, u) reads

M(s.t,u) =Y M(s)P)(2). (25)

where P;(z) are the Legendre polynomials and the sum
runs over all relevant angular momenta /. We start from the
amplitude M (s, t, u) projected onto the zzS wave,

Mo(s) = - /_ " azM (s, u), (26)

which can be split into two pieces,
My = ME + Mk, (27)

where the first and second term contain the right- and left-
hand cuts only, respectively. The right-hand cut of the
amplitude M¥ comes from the FSI while the left-hand cuts
of the amplitude Mf are due to the dynamics related to the

3This is correct up to HQSS violating terms and the D-wave
operators for the Y'(nS) that do not appear from the mechanisms
considered here.
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Z,, states. If the contribution M} is known and only the 7z
channel is considered for the FSI, the full amplitude can be
reconstructed dispersively via the solution of the inhomo-
geneous Omnes problem as (see Ref. [42] for a related
discussion)

Mo(s):Mé(s)+QO(s)Aoods’ ME(s")sind(s") (28)

/4 w2 |Qo(s)|(s'—s—i0)’

where Qg (s) is the S-wave single-channel Omnes function®
and ¢ is the zz S-wave phase shift (see Appendix A for
details). However, given that the energy in the zz system in
the reaction Y(10860) — zzY(1S) extends to 1.4 GeV,
that is far beyond the KK threshold, the inclusion of the KK
component becomes necessary. Generalization of Eq. (28)
to multiple channels is straightforward,

Mo(s):Mg(sHQO—(s)Amd

; :
Vs m2 s'—s5—1i0

(29)

Here, the multichannel Omnes matrix obeys the matrix
equation

Oo(s) = llw ds’ T*(S/)6<S)Q'O(S/)7 (30)

7T Jam? s’ —s5—i0

where hats indicate multicomponent objects (vectors
and matrices), 6(s) = diag{c,, 0} is a diagonal matrix
with op(s) = /1 —s%/s, and s for the threshold in
the corresponding channel (P = z, K). In particular, we
have M§ = ([M§],,, [M§]xx)". Furthermore, the S-wave
meson-meson coupled-channel amplitude 7' can be para-
metrized by the 7z scattering phase shift &(s) [43-46] as
well as the absolute value and phase of the zz — KK
transition [45,46], g(s) and w(s), respectively, as

T Tk 1=l el
T(s)= < e ””_’KK> = ( e 2i(w—5)_]>7 (31)

TKf(—»;m TKI_(—>KI_( gei'// '762

nr’

iog

where the inelasticity # is related to g as

1= \/1-4g%0.00(s — 4m}). (32)

To get the two-pion FSI amplitude one has to consider
the component [M(s)],, of the vector (29). If the ampli-
tude contains contributions from higher partial waves while

“We use the standard notation Q! for the Omngs function
where [ and I stand for the partial wave and isospin, respectively.
However, since in this work we deal only with isoscalars, the
superscript / = 0 is omitted everywhere.

0 (NT(s)5(s) MG (s")

the FSI is taken into account only in the S wave, one can
write

ds’'

; ;
m2 s'—s—1i0

s

Qo(S)/oo Q' ()T (s")a(s") MG ()
4
(33)

where M, ps = Mé + Mhigher is the complete tree level
production amplitude in the 7 and u channel, not pro-
jected onto partial waves, while the effect of the FSI
is taken into account by the second term in Eq. (33). In
this study, the zz component of the production amplitude
M, rs and its S-wave projection Mé are adopted from
Ref. [33]—see Sec. IIIC for a detailed discussion.
Meanwhile, the resonance production in the channel
Y (10860) — KKY(nS) which proceeds through the B-
and B;-meson loops is not considered since no information
about the SU(3) partners of the Z, states is available yet.
The dispersive integral in Eq. (33),

T

. 1 f[o OV (NT ()6 (s ME (s
o= [7 a BT o,
4m? s'—s5—10

where the lower index indicates / = O for the S wave, may
need to be subtracted n times to improve convergence and
to diminish the role played by the large-s region where the
zw scattering phase is not known well enough. Then, one
arrives at

N

15(s) = Py (s)

L[ O OISR g

7 Jamz 8" s —s—i0

where P,_;(s) is a polynomial of the order n — 1. If the
amplitude M5 (s) has both real and imaginary parts, then
the polynomial coefficients are complex numbers.
Meanwhile, if there are good reasons to believe that the
imaginary part of the amplitude ImM () is controlled by
well understood physics (see also a related discussion in
Sec. III D below), then the imaginary part of the polynomial
P,_1(s) can be evaluated exploiting sum rules via

n—-1 /
. sk [ ds
ImP,_,(s) = ;;A i)

/
m2 S

x Q' (T (s")a(s')ImA ('), (36)

A

where it was used that the quantity Qg'(s")T(s)6(s") is
real. This allows one to rewrite Eq. (35) in the form
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ién)(s) - Rn—l(‘g)
8" [ ds 95 ()T (s)5(s")ReMG (5
N

T Jamz " s'—s—10
. Q—l /T N A /ImML !

L[ BT
T Jam2 s’ —s—1i0

where the polynomial R,_;(s) is real by construction,

Rn—l (S) - Rej\)n—l(s)’ (38)
and so are its coefficients. As discussed below, ImM5 (s) is
nonvanishing on a finite interval of s only and, accordingly,
the integral in the last line of Eq. (37) does not require any

subtractions.

C. The left-hand cut production amplitude

In order to proceed with the formulas derived in the
previous subsection, we need to specify the form of the
|

2 Y(s)+xk(s)
L Kx(s) (log Y(s)—x(s) +
MO.stab]e(s’ mz) = 5 Y(s)tx(s) ]
5 (log GEOR 27if(s, — s))
Here

Y(s) = s +2m?—m? —mf 2m?2,

k(s) = o4(s) /l(s,mlz,m?-), (42)
and

Sq = 2mg +my +m; —2m? (43)

is the root of the equation Y(s) = 0. Furthermore, the
logarithmic branch points s, (also known as anomalous
thresholds) found as the roots of the equation #(s,,
z==41) = m? read

(m} —m3)?
VTR
< A(m7, mz, m?) £\ [A(m7, mz, m2 ))
- 5 , (44)
4m;
where 1 is the triangle function from Eq. (8).
In the regime
(mf +m,)? < m% < f(mj% + mlz) —m2, (45)

2

production amplitude M, g introduced in Eq. (33) and
determine its S-wave projection,

1 1
Mb(s) = [ a9

Consider, as a preliminary step, a stable-Z, exchange in
the ¢ and u channel. Then, assuming pointlike Y) — 7Z,

vertices, up to an overall constant, one can write the
invariant Born amplitude as

1 1

4+
2 27
z u—my;

Mstable(t’ u; mz) = (40)

t—m

where m is the mass of the mentioned stable Z, particle.
For future convenience we specify this mass as an argument
of the amplitude.

Performing the partial wave projection as introduced
in Eq. (39) for the Born amplitude (40) and using the

prescription m? — m? + i0 one arrives at

27i0(s, — 5)0(s — s+)), (my+m,)* <m? < %(mj% +m?) — m2,

(41)
m? < (my+my)* <5 (m7+mi)—mz.

|
s, is real and the anomalous threshold generates only a
phase term which is included in the first formula in Eq. (41)
(see also Ref. [41] for a related discussion). However, for

1
S (m} +mi) —mz. (46)

m2 < (my+m,)?* < 5
the branch point s, becomes complex and the dispersive
integral defined in Eq. (37) acquires an additional anoma-
lous contribution calling for an integration along some
complex path (see Appendix B for details). Namely, using

M. pom = —4mi/x for the anomalous discontinuity, the

integral 1{" (s) from Eq. (37) gets modified as
1§7(s) = 16" (5) + T§m (s mc).

where

?gnom(s m,) =

e /1dxdi_,' 871 Q0 (C) (£)s(2) (47)

2mi Jo ¢"dxx({) ¢—-s—i0

and ¢ = (1—x)s, +x4m? is the straight-line path
between the two-pion threshold and the branch point of
the logarithm, s .

A crucial point of the coupled-channel approach devel-
oped in Ref. [33] is that the resonances Z, are not
introduced as asymptotic states of the theory but appear
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FIG.2. Left-hand cuts in the production amplitude U coming from the BB* and B*B* scattering in the 7 (left) and u channel (right). Ty
denotes the coupled-channel amplitude for the transitions B*) B* — 7Y (nS).

as near-threshold poles of the amplitude fitted to the data.
This implies that, instead of the stable Z, propagator used
in Eq. (40), the inelastic amplitude U; [i = zY(nS) with
n =1, 2, 3] from Ref. [33], generated through the B-meson
loops and evaluated as given in Eq. (14), provides the input
for building M, rs; and M5—see Fig. 2 for its diagram-
matic representation. To proceed, we employ a dispersive
representation for the production amplitude U (to simplify
notations we omit the inelastic index 7 and thus consider a
particular inelastic final state),

Mno—FSI(t’ u) = U(t) + U(u)

1 [ i 1 1
=—= dp*ImU (p* +—
71'/,,2 #-im (ﬂ)(t—,uz u—

min

2
Hmax

- / dﬂzp(ﬂz)Mstable(t’ u; :u) ’ (48)

2

Hiin

where we used Eq. (40) and introduced the spectral
function

p(2) =~ TimU(). (49)

The lower limit in the integral above is given by the lowest
relevant threshold which may contribute to the imaginary
part of the amplitude. Unitarity of the production ampli-
tudes U(u?) requires integration from the lowest inelastic
threshold zY(1S), although the leading contributions start
from the BB*r threshold. The upper limit of integration in
Eq. (48) should formally be infinite, however the use of a
finite momentum regulator in the Lippmann-Schwinger
equations restricts the maximal values of the on-shell
momenta which therefore cannot exceed the cutoff A.
Thus in practical calculations p ., = myg, + A?/2u, is used
[33] [see also Eq. (13) for relevant definitions], and we have
verified that the dispersive representation from Eq. (48)
reproduces U(t) + U(u) from Ref. [33] quite precisely.
The limit of a stable particle, Eq. (40), is reached from
Eq. (48) for p(u?) = 8(u*> — m?). With the mass distribu-
tion of the Z, states included, the S-wave partial wave
amplitude reads

Hinax
) dﬂzp(ﬂz)Mé,stable(s7 /’l)’ (50)

Hmin

M (s) =

where M{ .. .(s.p) is defined in Eq. (41). Also, the
anomalous term from Eq. (47) has to be weighted with
the spectral function to read

R (m,,JrM/)Z 5
Isnom(s) _ /2 d,uzp(/lz)lgnom(s’ﬂ)- (51)

Hinin

D. Matching to chiral perturbation theory

Two comments on the convergence of the subtracted
dispersive integral (37) entering Eq. (33) are in order here.
First, as follows from Egs. (41) and (44), the imaginary part
of the M}(s) may be nonzero only at a finite interval in s
between the logarithmic branch points s_ and s, . Therefore,
the integral from ImM} in the last term in Eq. (37) is finite.
The appearance of an imaginary part in the left-hand cut
amplitudes is a specific consequence of the cuts which are
allowed in the process Y(10860) — zz Y (nS), especially
from the B"*) B* 7 intermediate states but also from inelastic
channels. While inelastic cuts can also contribute to similar
decays from the Y'(3S) and Y'(4S5), the presence of the cuts in
the elastic channels is only allowed kinematically starting
from the Y'(10860).

The number of subtractions n needed to render the
dispersion integral convergent can be determined by the
high-energy behavior of the function Qg'(s")7(s)8(s") x
ReM5(s'). Since the Omnés matrix is determined by an
unsubtracted dispersion relation (30), each of its elements
behaves as 1/s at high energies—see Ref. [47] for details.
Thus each element of its inverse scales as s. For the
scattering amplitude 7" in the two-channel case defined in
Eq. (31) it is possible to demonstrate that for T}, o 1/s3/2
atlarge s [48], T, and T, need to scale as 1/s>. Therefore,
we proceed with a conservative estimate that 7'(s) o 1/s5%/2
at large s. The left-hand cut amplitude for a stable particle
M g1 (5. m) falls off as log(s)/s at large s, however the
full left-hand cut production amplitude M5 may decrease
slower and is expected to approach a constant. Then, even
without subtractions, one in principle should arrive at a
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convergent integral. However, to suppress the contribution
of the large-s region, where the details of the zz interaction
are badly known, in what follows, twice subtracted dis-
persive integrals are considered, and the polynomial in
Eq. (37) takes the form

Ri(s) = a+ bs. (52)

with real parameters a and b, as was explained above. In
what follows, it will be shown that one of these constants is
mostly redundant at least for production of Y(nS) with
n =2 and 3.

It is important to notice that the polynomial R,(s)
parametrizes the amplitude for Y'Y’z at small values of
s and as such can be matched to chiral perturbation theory.
Specifically, in the limit of switching off the final-state
interactions, 8(s) — 0, g(s) = 0 in Eq. (31) and thus
setting Qy(s) — 1, the subtraction functions must agree
with the chiral amplitudes corresponding to the direct
transitions Y — 7z Y’ [49].

If one introduces spin multiplets for heavy-heavy fields,

J:Y'G—f—l’]b,

then the effective Lagrangian for the contact YY'zz and
YY'KK coupling, at the lowest order in the chiral and
heavy-quark expansions, reads [40,49,50]

Lyvop = % (JTT) () + % (J7J") (w,u,)v* v + Hee.,

(53)

where o is the four velocity of the heavy quark. The
contribution of the pseudoscalar Goldstone bosons for
the spontaneous breaking of the chiral symmetry can be
parametrized as

w, = i(u'O,u—ud,u’),
i®
e
\/Liﬂo —l—%ng s K*
D= n — 5+ ng KO | (54)
K~ K° _\/Lg”/S

where f is the pseudo-Goldstone boson decay constant,
fr=292.2MeV and fr = 113.0 MeV. If one makes an
expansion in the (soft) pion momenta ¢,, both operators
quoted in Eq. (53) scale as O(g2).

Considering an S-wave contribution for the tree-level
amplitudes, M} (s) = (Mg’””(s),%Mg’KK(s))T, one finds
(P=m, K)

2
Mg‘PP(s) = 7 NI {cl (s —2m3)
P

3ho(-A2))

where ¢ is the three momentum of the final Y in the rest
frame of the initial Y, that is,

1
q= %ﬂl/z(m%,m%,,s).

(56)
Up to some small corrections, the amplitude (55) behaves
as a linear polynomial in s. Thus the chiral amplitude at low
energies depends on the two low-energy constants ¢; and
¢5, which can be treated as fitting parameters instead of a
and b from Eq. (52). This amplitude corresponds to the
contact diagram depicted in Fig. 3(a).

Then, the amplitude M (s, ¢, u) from Eq. (24), which now
includes the effects from the zz and KK FSI in the S wave,
takes the form

T
\
s ™ \ - T
] / >
] 7 - *
I 7 mK 7
/ / 7 ;T K
/ / / ’
/ /
1, I
& oz
T T’ T T’
(a) (b)

FIG. 3.

Diagrams contributing to the full amplitude M (s, ¢, u) from Eq. (57) for the decay Y — zzY’ [Y' = Y(10860), Y’ = Y'(nS)

with n = 1, 2, 3]: (a) the contact diagram; (b) the contact diagram with the 7z and KK FSI; (c) the production amplitude M, ps; in the
and u channels, which contains left-hand cuts from the Z,s generated in a coupled-channel approach of Ref. [33], see also Eq. (48);

(d) same as in (c) but with the zz FSI.
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— Muorsi(1, 1) + o (s) (5™ (s) + 14 (s)),
(57)

M(s,t,u)

where M, gsp is given in Eq. (48) and the zz component
{11} of the matrix multiplication is implied. The integral

157 is defined as [cf. Eq. (37)]

+I5°m(s). (58)

where M§ (s') and T8mom (5 are given in Egs. (50) and (51),
respectively.

The diagrams representing different contributions to the
amplitude of Eq. (57) are depicted in Fig. 3: the sum of
Figs. 3(a) and 3(b) corresponds to the term Qq ()45 (s),
Fig. 3(c) gives the production amplitude M, g1 in the # and
u channels, and Fig. 3(d) describes the contribution of the

last term Qo(s);(()z)(s).

E. Inclusion of the zz FSI in the D wave

Generalization of Eq. (57) to the zz FSI in higher partial
waves is straightforward,

M(s,t,u) = Mo psi(t, u)

+ ZQZ

YR (5) + 11" (), (59)

where the sum runs over all relevant angular momenta /.
More specifically, taking into account the zz interaction in
the D wave, we write for the amplitude

— Myopsi (1 1) + Qo () (5™ () + 1 (s))
+ Qo (5)ML™ (5) Py (2), (60)

M(s,t,u)

where P,(z) is the second-order Legendre polynomial [see
also Eq. (23)], the amplitude M%™ (s) extracted from the
Lagrangian (53) reads

2
\/mY'mY"CZqZG;Zr(S)’ (61)

M5 (s) = 372

and the diagrams which correspond to the amplitude (61)
coincide with those depicted in Figs. 3(a) and 3(b), however
with no kaons in the loop. No additional parameter is
involved in the amplitude (61), since ¢, also enters Eq. (55).
The D-wave Omnés function €, (s) in Eq. (61) is calcu-
lated using the D-wave zz phase shift from Ref. [43] and is
dominated by the f,(1270) resonance contribution. In
general, the amplitude in Eq. (60) should also contain

the dispersive integral I é"Z) (s), which is however neglected
in the current study. This is motivated by the fact that the
corresponding D-wave contribution from the chiral poly-
nomial in Eq. (61) plays only a very minor role in the fits, as
discussed in Sec. IV. While in this study the main focus is
put on the development of the appropriate formalism and
testing the general consistency of the coupled-channel EFT
approach of Ref. [33] with the data in the Y(10860) —

zx Y (nS) decays, we postpone the calculation of 7&"2) (s) to
a future global analysis of all data available in various
channels.

IV. DATA ANALYSIS

With the coupled-channel approach developed in
Ref. [33] and further augmented by the zz/KK interaction
in the final state, as explained in the previous section, we
are in a position to analyze the data on the decays
Y(10860) —» zzY(nS) (n =1, 2, 3). We use the Belle
data from Ref. [51] and make a maximum likelihood L fit
to the two-dimensional distributions. The minimized func-
tion is defined in a standard way [52],

—2log £ =2) (M,- —n; +n; logﬂ>, (62)
; Hi

where the sum runs over all bins in the analyzed two-
dimensional distribution, while n; and y; are the number of
events and the value of the theoretical signal function in the
ith bin, respectively. The signal function is corrected for the
efficiency, and the experimental background distribution is
added. To account for the invariant mass resolution in
M?(zY'(nS)), we convolute the theoretical results with the
Gaussian resolution function with ¢ =4.3, 2.2, and
1.3 MeV for Y(1S), Y(2S), and Y(3S), respectively.
The effect of the energy resolution for the invariant mass
M?(zr) is neglected, since the line shapes for this projec-
tion do not show any sharp peaking structures and are quite
smooth functions of M?(zx). In each zz Y (nS) (n=1, 2, 3)
channel we fit three parameters: c¢;, ¢,, and N/, where the
former parameters correspond to the low-energy constants
in the chiral polynomial [see Eq. (55)] while the latter one
provides the overall normalization of the distribution [see
Eq. (24)]. We exclude the region near the Dalitz plot
boundary to minimize the effects of the e*e™ center-of-
mass energy spread and the detector resolution.
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FIG. 4. One-dimensional projections on the M*(zY'(nS)) (n = 1, 2, 3) (left panel) and M?(zx) (right panel) of the fits to the two-
dimensional Dalitz plots, as explained in the text. The blue dashed lines correspond to the results from the #- and u-channel contributions
from Ref. [33] plus experimental background [the latter is however negligible for Y'(2S) and Y'(35)], the black dotted lines correspond to
the same result plus the dispersively reconstructed s-channel contribution of the amplitudes from Ref. [33] (the integral I,,) while the
green lines include in addition the effect from chiral polynomials. The red solid lines represent the full result, where the difference from
the green lines is due to the D-wave contributions. The theoretical results are convoluted with the energy resolution in M?(zY'(nS)), see
text. The experimental data are shown as black data points with uncertainties.

The results of the data analysis performed in this work
are presented in Fig. 4 in the form of one-dimensional
projections of the Dalitz plots, namely the invariant mass
distributions M?(zz) and M?(z Y (nS)). The parameters of
the fits are listed in Table II, where the last column shows
that at least for production of Y(2S) and Y(3S) only a
linear combination of the two constants is relevant. From
Fig. 4 one can see that the developed approach is able to
describe the data in the zzY' channels rather well. In each

TABLE II. Parameters of the fits to the two-dimensional Dalitz
plots obtained in this work. The last column shows the correlation
between the parameters.

Channel ¢ x 10* [GeV™!] ¢, x 10* [GeV~!]  Correlation
zr Y (1S) 0.322 +£0.017 —0.171 £ 0.020 61%
zr Y (2S5) 21.1£0.6 -12.6 £0.5 97%
7Y (35) —-17.8 £3.1 16.1 £3.6 91%
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FIG. 5.

Helicity angular distributions for the decays Y(10860) — zz Y (nS) with n = 1, 2, 3 for the left, middle, and right plot,

respectively. The helicity angle z = cos @ is defined in Eq. (23). For the lines definition see the caption of Fig. 4.

plot we give several curves showing different contributions
to the total rate. The relative importance of these contri-
butions changes significantly with the mass of the botto-
monium Y (nS) in the final state.

(i) Incase of the zzY'(3S) channel, given a very limited
phase space available, the distributions are domi-
nated by the 7- and u-channel production amplitudes
from Ref. [33] [M sy in Eq. (33)] that capture the
gross features of the experimental distributions.
Effects from the zz FSI and chiral polynomials
are marginal individually and, in addition, numeri-
cally cancel each other to a large extent.

(i) For the zzY'(2S) channel, the resulting contribution
from the 7- and wu-channel amplitudes and the
dispersively reconstructed s-channel FSI are all
important but not sufficient to explain the data.
The missing strength and the energy dependence
comes from the chiral contact terms with the
zrz FSL

(iii) Finally, in case of the zzY(1S) final state with the
maximal available phase space, the pattern of the
individual contributions is qualitatively similar to
that in the Y(2S) channel. In particular, the 7- and
u-channel production amplitudes provide the peak-
ing structures from the Z,s and enhance the small
zz region in the corresponding line shape. The
dispersive integral I;, enhanced by the zz-KK
FSI from the coupled-channel Omnes function, is
very important. It provides more than half of the
full signal at small Msz(nS) and large M2, but also

significantly affects the M2, (ns) line shape in the Z,s

area. In addition, I, drives the shape of the M2,
spectrum near the KK threshold and together with
the 7- and wu-channel production amplitudes de-
scribes the low M2, region. The residual contribu-
tion comes from chiral contact terms in S wave,
while their effect in D wave is minor.

In Fig. 5 we give the helicity angular distributions,
including individual contributions to it. The anisotropies of
these distributions are largely driven by the higher partial-
wave contributions from the amplitude M, gg(2, u) in
Eq. (60)—as usual the partial wave expansion in some

subsystem converges badly, as soon as there is a narrow,
near on shell state in the crossed channel.

While the approach advocated in this study allows
for a quite reasonable quantitative understanding of the
line shapes in the zzY(nS) channels, we would like to
emphasize that the peaks of the Z,s in our results (red
solid curves in Fig. 4), which by construction are consistent
with the experimental B*)B* and zhj,(mP) (m =1, 2)
distributions, are not exactly in accord with the data in
the 7Y (nS) channels. This observation still calls for an
explanation.

V. CONCLUSIONS

In this work we extended the coupled-channel approach
developed previously in Ref. [33] to incorporate the 7z
FSI in the heavy-quark-conserving channels zzY(nS)
(n=1, 2, 3). Maximum likelihood fits to the two-
dimensional Dalitz plots are performed in each such
channel. Compatibility with the previous analysis of the
line shapes in the B*) B* and zh;,(mP) (m = 1, 2) channels
is guaranteed by employing the amplitudes obtained in
Ref. [33] as input for the current research.

The zz FSI was incorporated into the coupled-channel
scheme employing a dispersive approach, in which the left-
hand cut contributions were provided by the previously
found inelastic production amplitudes. Also, it was con-
jectured that the dominating sources of the imaginary parts
of the production amplitudes in the zz Y (nS) channels are
fully under control and, therefore, only the real parts of the
complex polynomials were fitted to the data, while their
imaginary parts appeared as actual predictions of the
approach. As a cross-check, it was verified that the fits
did not improve much if the imaginary parts of the chiral
polynomials were also fitted to the data.

The results obtained demonstrate that the extended
approach developed in this work is able to describe the
existing experimental data with a reasonable accuracy.
As expected, the role of the FSI increases with the increase
of the allowed phase space. For example, it is remarkable,
that the results for the zzY(3S) channel, which are
almost completely driven by the production operators from
Ref. [33] with all the parameters fixed from other data, are
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in a relatively good agreement with the data for the zz and
7Y (3S) projections. Meanwhile, effects from the zz FSI
in the S-wave are found to be important for the zz Y (2S5)
and, especially, zzY(1S) channel. In the latter case, also
the KK channel plays a very important role. In particular,
the coupled-channel zz—KK dynamics shows up as a
very clear dip structure near the KK threshold, which is
consistent with the data. The effect of the D-wave reso-
nance f,(1270) included via the D-wave Omnés function
together with the contact production operators is found to
be very minor for all channels.

Among the open questions to mention is an observation
that the peaks corresponding to the Z,s from the presented
analysis do not completely correspond to the data in the
7Y (nS) channels. To address this question a full combined
fit to all measured production and decay channels for the
Z,s should be performed. This lies beyond the scope of the
present research.

We consider the results presented here as an important
step towards a comprehensive combined analysis of the data
in all production and decay channels of the Z,s, which
should in the future also incorporate pion exchanges. Such
an analysis which will include the full information contained
in the two-dimensional distributions for the zzY(nS)
channels should provide the most accurate determination
of the parameters of the theory and, as a result, allow us to
make quite precise predictions for the line shapes, pole
positions, decays couplings, and other properties of the yet
unobserved spin partner states W,;. Such an insight is
expected to provide an important theoretical background for
the searches of the W,;s as well as other near-threshold
exotic candidates in the experiment Belle II and, possibly, in
LHCb and future hadronic experiments.
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APPENDIX A: DISPERSIVE APPROACH

TO THE AMPLITUDE M (s.t,u)

Under the assumption that the right-hand cuts of
the amplitude (26) are only due to the FSI of pion

pairs, one can write for the discontinuity of M, on
this cut

DiscM(s) = My(s + ie) — My(s —ie) =M, — M,_

= 2iT*(5)o,(s)My(s)0(s — 4m2), (A1)
where s is the 7z invariant energy, o,(s) = \/1 —4m2/s,
and T(s) = sinde®®/c,(s) is the zx scattering amplitude.

Then the standard way to proceed is to introduce the Omnes
function Qq(s) which by definition obeys the equation

DiscQq(s) = 2iT*(s)0,(5)Q0(s)0(s — 4m?2)

= 2isin 5|Q|0(s — 4m?2), (A2)
so that
Diseh, — 25h0) (A3)
O Q(s) o

Since DiscM(% =0 on the unitary cut and, therefore,
DiscM, = DiscME, this can be rewritten as

DiscQy(s)

DiscME = ()

(MG + Mg). (A4)

The solution of Eq. (A4) for M g can be found in the form

M = Qy(s)G(s), (AS)

where G(s) is an unknown function to be restored
dispersively from its discontinuity. To this end we find
from Eq. (AS) that

DiscME = Disc(QyG) = Qy, G, — Qy_G_
=Q0,G, —Qy G, +Q)_G, —Q,_G_
= G DiscQ + Q,_DiscG
_ DiscQy

Q

ME 4 |Qy|e~*DiscG, (A6)

where X.. = X(s % ie) for an arbitrary function X(s), and it
was used that

Qo =Q=|Qle?, Qo =Qy e =[Qle™. (A7)
Equations (A4) and (A7) together yield
DiscQ,
DiscG(s) = i 20 & (A8)
|20l
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and, with the help of Eq. (A2), one finds

DiscG(s) 1siné
=— A9
27i 7 | (A9)
Then, the function G(s) is restored as
1 ME(s') sin§(s")
G(s) =— ds’' ., (A10
0= o BT sy A1

and the solution for the full amplitude takes the form
of Eq. (28).

If the amplitude M (s) has no imaginary part, it is easy
to verify that the phase of the amplitude M, is given by the
zz scattering phase §. Indeed, employing the Sokhotski-
Plemelj formula,

1 1 )
——==Dp.V. ] - All
S/ — 5 — lO pV Sl _S+ l”(s(s S)’ ( )

where p.v. stands for the principal value, one can rewrite
Eq. (28) in the form

My = Mke coss +

Q (s)f s ,ME(s) sin§(s")

IQo( )I(S - )
_ oo M cos |QO s)| s1n5( "
0 |QO (s'=s))’
(A12)
where it was used that
1 +ie?sind = e cos é. (A13)

Since the expression in parentheses is real by construction,
the entire phase of the amplitude M, is indeed given by the
zx scattering phase 0.

Generalization of the formalism to the coupled-channel
case is straightforward and amounts to replacing the scalar
objects by matrices, as given in Eq. (29) in Sec. III A.

APPENDIX B: ANOMALOUS CONTRIBUTIONS
TO THE AMPLITUDE M{(s)

Consider a triangle diagram depicted in Fig. 6 with the
z7 interaction in the final state (the 77z vertex is considered
pointlike),

1 1
Co(s) =— [ a*l ) Bl
ols) iﬂ'z/ (7 = m2 +i0][(I + p;)* — m% + i0)[(I — py)* — m} + i0] (B
I
where a shorthand notation is used for the standard I - 2\ DiscCy(s) 3
scalar loop function Co(s) = Co(m;, s, m7, m?, mz, mz). MG gabie (s, m2) = "o () mi (B3)

The function Cy(s) can be calculated through a dispersive
integral,
_ 1/oo " Dis?Co(s’) ’
27l Jam2 s'—s

where the discontinuity DiscCy(s) is simply related to the
S-wave projected left-hand cut amplitude (39) for a stable
particle with the mass m,,

Co(s) (B2)

T/

FIG. 6. The triangle diagram with the z—z FSI described by the
scalar loop function Cj as introduced in Eq. (B1). The dotted line
indicates the cut—see Eq. (B4).

Therefore, studies of the amplitude M} (s) amount to
building an analytical form of the discontinuity DiscCy(s)
which reproduces the tabulated triangle loop function Cy(s)
in the kinematical regimes of interest through the dispersive
integral (B2).

Typically, the discontinuity of a loop function is related
to an appropriate cut of the corresponding diagram
(see the dotted line in Fig. 6) evaluated with the help
of the Cutkosky rules. For a heavy Z, with the mass
m? > 3 (m7 +m}) — mz, this gives

{dlszii(l)(ﬂ naive :%o”(s) /_1 t—ern?
Wt

+27i0(s, — s)) ,

(B4)
where the analytic continuation m? — m? + i0 is implied,
Y(s) and k(s) are defined in Eq. (42), and the point s, in

Eq. (43). The steplike function on the right-hand side of
Eq. (B4) provides an appropriate phase of the logarithm
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when Y(s) =0 and its argument changes the sign. The
discontinuity (B4) is labeled as naive since, for m% <
5 (m7 + m7) — mZ, the logarithm branch point s, defined
in Eq. (44) as the root of the equation Y(s) + x(s) = 0,
appears on the physical Riemann sheet. As a consequence,
the discontinuity DiscCy(s) acquires an additional anoma-
lous term which does not correspond any more to simply
cutting the triangle diagram in the pion lines—see, for
example, Ref. [53]. Thus, in order to avoid crossing of the
logarithm cut spread between s_ and s, with the unitarity
cut, the contour of integration in the dispersive integral
needs to be deformed. This gives

where
DiseCP™(¢() _ _, _ax(¢()
w89

and the path of integration {(x) in Eq. (B5) can be chosen
straight line,

£(x) = x5+ (1= %)s,. (B7)
with sy, = 4m2 for the two-pion threshold and s, which
appears on the first sheet.

The interested reader can find a relevant discussion on
an anomalous contribution in Ref. [54]. Here we only
briefly consider the kinematic regimes important for the
problem at hand, as illustrated in Fig. 7. Moreover, we
only focus on the kinematic range with s > s, which is
relevant for our study. We start from the case of a heavy Z,
with the mass m? > 5 (m} 4+ m}) —mz, which is also
satisfied for the physical masses of both Z,(10610) and
Z,(10650) quoted by the Particle Data Group [52]. This
case corresponds to the interval between points A and B in
Fig. 7. The discontinuity in this regime is given by
Eq. (B4), and no anomalous term is required. Also, since
s, 1s negative, the @-function term in Eq. (B4) vanishes.
For m? = 5 (m} + m7) — mg, the branch point s, hits the
two-pion threshold at the point B and then, for m? <
3 (m7 +m7) —mz, the anomalous contribution emerges,

2

since s enters the first sheet. In the regime (m, +m,)” <

2
b4

m? < 3(m7 + m7) — my (see the interval between points B

and C in Fig. 7), both s, and s_ are real and the following
relations hold

St < Sy < S5_ <8, < (m;+mp)?. (B8)

It is easy to verify that the effect of an anomalous

threshold in this case amounts to simply 2zi terms added

to the logarithm between the threshold and the branch

~-“L\
\\\:\ D
BN
0.10 + RN
, N
- AY
\
: \
- AY
— 0.05 B N A} b
N : \
g ; \
@ : [
. C
=~ 000} B
- ~
75} - \‘
E ]
—005] S
: /
- 7
: /
N 4
4
~0.10} o

000 005 0.10 0.15
Re s, [GeV?]

FIG. 7. The motion of the logarithm branch point s, (the
dashed red line) defined in Eq. (44) in the s complex plane as the
“running” mass of the Z, varies—see the discussion in the text.
The convention m? — m? + ie is employed and, to guide the eye,
some finite tiny € is set. The unitarity cut is shown by black solid
line. It starts at 4m2, as indicated by the vertical dotted orange
line. The points marked with the capital latin letters, from A to D,
are added to illustrate the relevant regions for 5. The figure is
plotted for the masses of the reaction Y(10860) — Y'(3S)xz.

point s, . Then the resulting discontinuity reads [cf. the
naive formula (B4)

discCy(s) o,(5) Y(s) + x(s)
[ i }‘ k(s) (l"g Y(s) = k(s)

+27if(s — s, )0(s, — s)>, (B9)

and it is straightforward to verify that it indeed restores
the standard loop function Cy(s) through the disper-
sion relation (B2). On the other hand, if m, decreases
below the value my +m, [that is, m? < (m; +m,)* <
5 (m7 + m7) — m] the branch point s goes to the complex
plane (see the path between points C to D in Fig. 7) and the
dispersive reconstruction of the integral C, reads

TABLE III.  The critical value of the running mass m, when s
emerges in the first sheet but is still real (second column) and
when s, goes to the complex plane (first column).

5 (m +m7) —mz, GeV

Channel my + m,, GeV

zr Y (15) 9.5999 10.1833
zr Y (2S5) 10.1626 10.449
zr Y (35) 10.4948 10.6097
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" 2z

1 [o  DiscCy(s')
Cos) = 357 [ s P e ¢ cgens)

m;

where 6C{™™(s) does not reduce to 2zi any more.

(B10)

In Table III, we list the critical values of the running mass m, when the anomalous term becomes relevant for the

azY(nS) (n =1, 2, 3) channels.
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