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● Unroll recurrent dynamics via Green’s functions
● Soft margin yields closed-form expressions for optimization

○ First- and second-order stimulus statistics have 
strongest influence on performance

○ Effect of higher-order stimulus statistics suppressed by 
powers of the perturbation parameter 

● Trade-off between separation and variability in readout 
direction

● Significant gain from non-linearity for weakly linear 
separable data

● Clear absolute performance gain also in linearly well 
separable ECG5000 dataset

● Reservoir Computing as 
computationally efficient machine 
learning system [1, 2]

● Task: Binary classification of one- 
dimensional, time-dependent stimuli

● Dynamics governed by random 
recurrent reservoir with 
connectivity___  and transfer 
functions__________________

● Stimulation via input projection __ 
and classification via hyperplane 
with readout vector __

● Dependence of the performance on 
reservoir properties has already 
been studied [3, 4]

● Joint optimization of input and readout projections
● Classification quality measure: margin 
● Differentiable and less sensitive to exact realizations of stimuli: soft 

margin
● For  large set of sample data: __ becomes cumulant generating function
● Gradient can be calculated to desired degree of complexity of the 

network state distribution using a cumulant expansion

Linear dynamics

● Linear dynamics: exact solution

● Green’s function as propagator 
from stimulus to network space

● Mapping: stimulus statistics → 
network state statistics

● Optimization of soft margin: 
quadratic problem in both _____ 
and __

● For fixed reservoir, stimulus and 
readout time: considerable increase 
in classification performance

● Optimal input vector composed of 
modes with various time constants

Non-linear dynamics

● Non-linear dynamics can be approximated
as perturbation series for small __

● Consider only first order correction to linear 
dynamics: Green’s function 

● __ becomes sensitive to second order 
stimulus statistics, _ becomes sensitive to 
fourth order statistics

● Discriminate between healthy and diseased heartbeats [6]
● Increased separability

○ Strongly increased mean separation 
○ Only moderate increase of fluctuations in readout direction

● Performance increase clearly reflected in both soft margin and 
test set accuracies

Application to ECG5000

Optimization: Non-linear system

● Maximize closed-form expressions for
● Clear benefit compared to random
● Gain from non-linearity varies with linear separability of stimuli
● Significant performance increase for low linear separabilities

Setup Objective

arxiv: 2010.06247

Simulations carried out using 
NEST simulator [5]

Conclusion

Analytically unrolling recurrent dynamics into 
Green’s functions is a versatile approach that 
may be used as a general purpose scheme to 
analyze recurrent networks.


