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Setup

Reservoir Computing as
computationally efficient machine
learning system [1, 2]

Task: Binary classification of one-
dimensional, time-dependent stimuli
Dynamics governed by random
recurrent reservoir with

connectivity W and transfer
functions ©(¥) € {y,y + oy}
Stimulation via input projection U
and classification via hyperplane
with readout vector U

Dependence of the performance on
reservoir properties has already
been studied [3, 4]

Linear dynamics

Linear dynamics: exact solution
y(t) = 3 [t GO (t — ) ua(t)
GW(t—t) = Lexp [— (1- W)%]

Green’s function as propagator
from stimulus to network space
Mapping: stimulus statistics —
network state statistics

M x u(C,x")

D ocu?((27?) — (Ga”)?)
Optimization of soft margin:
quadratic problem in both u

and v

For fixed reservoir, stimulus and
readout time: considerable increase
in classification performance
Optimal input vector composed of
modes with various time constants

Objective

arxiv: 2010.06247

e Joint optimization of input and readout projections

e Classification quality measure: margin x(u,v) = min,, (¢, v y%")

e Differentiable and less sensitive to exact realizations of stimuli: soft
margin kn(u,v) = —% In {ZV exp(—nC,,va“”’)}

e For large set of sample data: K, becomes cumulant generating function

e Gradient can be calculated to desired degree of complexity of the
network state distribution using a cumulant expansion

fo(u,v) = vT M* — 1nvT S v
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Simulations carried out using

NEST simulator [5]

Non-linear dynamics

Non-linear dynamics can be approximated
as perturbation series for small o

Consider only first order correction to linear
dynamics: Green’s function G2

G2 — S G oW (GW)?
M becomes sensitive to second order

stimulus statistics, Y becomes sensitive to
fourth order statistics

M= GWy(¢z")
+ 3 GP P ((2?) - (G2”)?)
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Optimization: Non-linear system

(b)

10 e Maximize closed-form expressions for K,
€ 0,006 | e Clear benefit compared to random u
g / 0.8 e Gain from non-linearity varies with linear separability of stimuli
g 0.004 s 0.6= e Significant performance increase for low linear separabilities
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Application to ECG5000

e Discriminate between healthy and diseased heartbeats [6]
random U optimized u e Increased separability
o Strongly increased mean separation M
o Only moderate increase of fluctuations in readout direction
e Performance increase clearly reflected in both soft margin and
test set accuracies
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Conclusion

e Unroll recurrent dynamics via Green’s functions
K = f (U, M(U) , D (U)) e Soft margin yields closed-form expressions for optimization
o First- and second-order stimulus statistics have
strongest influence on performance
o Effect of higher-order stimulus statistics suppressed by
powers of the perturbation parameter o
e Trade-off between separation and variability in readout
direction
e Significant gain from non-linearity for weakly linear
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