000890814 001__ 890814
000890814 005__ 20240712113130.0
000890814 0247_ $$2doi$$a10.1021/acs.jpcc.0c09968
000890814 0247_ $$2ISSN$$a1932-7447
000890814 0247_ $$2ISSN$$a1932-7455
000890814 0247_ $$2Handle$$a2128/27555
000890814 0247_ $$2WOS$$aWOS:000626769100007
000890814 037__ $$aFZJ-2021-01222
000890814 041__ $$aEnglish
000890814 082__ $$a530
000890814 1001_ $$0P:(DE-Juel1)180325$$aBuchheit, Annika$$b0$$eCorresponding author
000890814 245__ $$aPolycarbonate-Based Lithium Salt-Containing Electrolytes: New Insights into Thermal Stability
000890814 260__ $$aWashington, DC$$bSoc.$$c2021
000890814 3367_ $$2DRIVER$$aarticle
000890814 3367_ $$2DataCite$$aOutput Types/Journal article
000890814 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617975306_9159
000890814 3367_ $$2BibTeX$$aARTICLE
000890814 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890814 3367_ $$00$$2EndNote$$aJournal Article
000890814 520__ $$aFor investigation of the thermal stability of polycarbonate-based lithium salt-containing electrolytes, polycarbonate–salt mixtures [polyethylene carbonate (PEC) and polypropylene carbonate (PPC) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)] were heated to 100 °C and the conductivity was monitored with electrochemical impedance spectroscopy for at least 24 h. At a constant high temperature, the observed rise in conductivity can be correlated to degradation of long-chain polymer units to small-chain polymer units as the viscosity decreases with a shorter chain length. In both cases, degradation can be observed. With PEC–LiTFSI, it takes ≈9 h until total degradation; with PPC–LiTFSI, the process is slower. Additionally, we repeated the experiments with PEC and other Li salts such as lithium trifluoromethanesulfonate (LiOTf), lithium bis(pentafluoroethanesulfonyl)imide (LiBETI), and lithium difluoro(oxalato)borate (LiDFOB). These experiments resulted in the degradation being dependent on the electrophilic activation by the lithium salt. With different Li-free salts such as sodium bis(trifluoromethanesulfonyl)imide (NaTFSI), potassium bis(trifluoromethanesulfonyl)imide (KTFSI), and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), no degradation of the polymer is observable. As a degradation mechanism, we anticipate a depolymerization of PEC at the α-carbon of the carbonate group in the polymer chain in the presence of a lithium salt with a weakly coordinating anion.
000890814 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000890814 588__ $$aDataset connected to CrossRef
000890814 7001_ $$0P:(DE-Juel1)166392$$aGrünebaum, Mariano$$b1
000890814 7001_ $$0P:(DE-HGF)0$$aTeßmer, Britta$$b2
000890814 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3
000890814 7001_ $$0P:(DE-Juel1)176785$$aWiemhöfer, Hans-Dieter$$b4$$eCorresponding author
000890814 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.0c09968$$gp. acs.jpcc.0c09968$$n8$$pacs.jpcc.0c09968$$tThe journal of physical chemistry <Washington, DC> / C$$v125$$x1932-7455$$y2021
000890814 8564_ $$uhttps://juser.fz-juelich.de/record/890814/files/acs.jpcc.0c09968.pdf$$yRestricted
000890814 8564_ $$uhttps://juser.fz-juelich.de/record/890814/files/PEC_decomposition_nach_Review.pdf$$yPublished on 2021-02-19. Available in OpenAccess from 2022-02-19.$$zStatID:(DE-HGF)0510
000890814 909CO $$ooai:juser.fz-juelich.de:890814$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180325$$aForschungszentrum Jülich$$b0$$kFZJ
000890814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166392$$aForschungszentrum Jülich$$b1$$kFZJ
000890814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000890814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176785$$aForschungszentrum Jülich$$b4$$kFZJ
000890814 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000890814 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000890814 9141_ $$y2021
000890814 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000890814 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000890814 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890814 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000890814 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000890814 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000890814 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000890814 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2018$$d2020-08-29
000890814 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000890814 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000890814 920__ $$lyes
000890814 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000890814 9801_ $$aFullTexts
000890814 980__ $$ajournal
000890814 980__ $$aVDB
000890814 980__ $$aUNRESTRICTED
000890814 980__ $$aI:(DE-Juel1)IEK-12-20141217
000890814 981__ $$aI:(DE-Juel1)IMD-4-20141217