000890892 001__ 890892
000890892 005__ 20240313103109.0
000890892 0247_ $$2ISSN$$a0022-7722
000890892 0247_ $$2ISSN$$a1447-073X
000890892 0247_ $$2ISSN$$a1447-6959
000890892 0247_ $$2arXiv$$aarXiv:2006.11099
000890892 0247_ $$2Handle$$a2128/28438
000890892 0247_ $$2altmetric$$aaltmetric:84456717
000890892 037__ $$aFZJ-2021-01223
000890892 082__ $$a610
000890892 1001_ $$0P:(DE-Juel1)176282$$aKorcsak-Gorzo, Agnes$$b0$$eCorresponding author
000890892 245__ $$aCortical oscillations implement a backbone for sampling-based computation in spiking neural networks
000890892 260__ $$c2021
000890892 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1648556842_3174
000890892 3367_ $$2ORCID$$aWORKING_PAPER
000890892 3367_ $$028$$2EndNote$$aElectronic Article
000890892 3367_ $$2DRIVER$$apreprint
000890892 3367_ $$2BibTeX$$aARTICLE
000890892 3367_ $$2DataCite$$aOutput Types/Working Paper
000890892 500__ $$a28 pages, 11 figures
000890892 520__ $$aBeing permanently confronted with an uncertain world, brains have faced evolutionary pressure to represent this uncertainty in order to respond appropriately. Often, this requires visiting multiple interpretations of the available information or multiple solutions to an encountered problem. This gives rise to the so-called mixing problem: since all of these 'valid' states represent powerful attractors, but between themselves can be very dissimilar, switching between such states can be difficult. We propose that cortical oscillations can be effectively used to overcome this challenge. By acting as an effective temperature, background spiking activity modulates exploration. Rhythmic changes induced by cortical oscillations can then be interpreted as a form of simulated tempering. We provide a rigorous mathematical discussion of this link and study some of its phenomenological implications in computer simulations. This identifies a new computational role of cortical oscillations and connects them to various phenomena in the brain, such as sampling-based probabilistic inference, memory replay, multisensory cue combination and place cell flickering.
000890892 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000890892 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000890892 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000890892 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x3
000890892 588__ $$aDataset connected to arXivarXiv
000890892 7001_ $$0P:(DE-HGF)0$$aMüller, Michael G.$$b1
000890892 7001_ $$0P:(DE-HGF)0$$aBaumbach, Andreas$$b2
000890892 7001_ $$0P:(DE-HGF)0$$aLeng, Luziwei$$b3
000890892 7001_ $$0P:(DE-HGF)0$$aBreitwieser, Oliver Julien$$b4
000890892 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha J.$$b5$$ufzj
000890892 7001_ $$0P:(DE-HGF)0$$aSenn, Walter$$b6
000890892 7001_ $$0P:(DE-HGF)0$$aMeier, Karlheinz$$b7
000890892 7001_ $$0P:(DE-HGF)0$$aLegenstein, Robert$$b8
000890892 7001_ $$0P:(DE-HGF)0$$aPetrovici, Mihai A.$$b9
000890892 773__ $$x-$$y2021
000890892 8564_ $$uhttps://arxiv.org/abs/2006.11099
000890892 8564_ $$uhttps://juser.fz-juelich.de/record/890892/files/korcsak-gorzo2021cortical_arxiv.pdf$$yOpenAccess
000890892 909CO $$ooai:juser.fz-juelich.de:890892$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000890892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176282$$aForschungszentrum Jülich$$b0$$kFZJ
000890892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b5$$kFZJ
000890892 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000890892 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000890892 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000890892 9141_ $$y2021
000890892 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890892 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000890892 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000890892 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000890892 9801_ $$aFullTexts
000890892 980__ $$apreprint
000890892 980__ $$aVDB
000890892 980__ $$aI:(DE-Juel1)INM-6-20090406
000890892 980__ $$aI:(DE-Juel1)IAS-6-20130828
000890892 980__ $$aI:(DE-Juel1)INM-10-20170113
000890892 980__ $$aUNRESTRICTED
000890892 981__ $$aI:(DE-Juel1)IAS-6-20130828