000890902 001__ 890902
000890902 005__ 20211209142053.0
000890902 0247_ $$2doi$$a10.1016/j.jhydrol.2021.126053
000890902 0247_ $$2ISSN$$a0022-1694
000890902 0247_ $$2ISSN$$a1879-2707
000890902 0247_ $$2Handle$$a2128/27283
000890902 0247_ $$2altmetric$$aaltmetric:100893517
000890902 0247_ $$2WOS$$aWOS:000642334400032
000890902 037__ $$aFZJ-2021-01233
000890902 082__ $$a690
000890902 1001_ $$0P:(DE-HGF)0$$aGohardoust, Mohammad R.$$b0
000890902 245__ $$aAdaptation and validation of the ParSWMS numerical code for simulation of water flow and solute transport in soilless greenhouse substrates
000890902 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000890902 3367_ $$2DRIVER$$aarticle
000890902 3367_ $$2DataCite$$aOutput Types/Journal article
000890902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639050618_4180
000890902 3367_ $$2BibTeX$$aARTICLE
000890902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890902 3367_ $$00$$2EndNote$$aJournal Article
000890902 520__ $$aNumerical simulation of three-dimensional water flow and solute transport in containerized variably saturated soilless substrates with complex hydraulic properties and boundary conditions necessitates high-resolution dis­ cretization of the spatial and temporal domains, which commonly leads to several million nodes requiring nu­ merical evaluation. Even today’s computing prowess of workstations is not adequate to tackle such problems within a reasonable timeframe, especially when numerous realizations are required to optimize the geometry, substrate properties, and irrigation and fertigation management of soilless plant growth modules. Hence, the parallelization of the numerical code and utilization of high performance computing (HPC) are essential. Here, we adapted and applied the ParSWMS parallelized code that is amenable to solving the 3D Richards equation for water flow and the convection-dispersion equation for solute transport subject to linear solute adsorption. The code was modified to allow for nonlinear equilibrium solute adsorption with new boundary conditions and applied to simulate water flow and nitrogen and phosphorus transport in containerized soilless substrates. Multi- solute transport simulations with the modified Linux ParSWMS code were first performed on a workstation and referenced to the Windows-based HYDRUS (2D/3D) numerical code. After confirming the agreement between the modified ParSWMS code and HYDRUS (2D/3D), various preconditioners and iterative solvers were evaluated to find the computationally most efficient combinations. The performance of the modified ParSWMS code and its stability were compared to HYDRUS (2D/3D) simulations for three soilless substrates consisting of horticultural perlite, volcanic tuff, and a volcanic tuff/coconut coir mixture. Considering the solute mass balance error as a stability measure, ParSWMS outperformed HYDRUS (2D/3D). Moreover, simulations with the modified ParSWMS code were about 22% faster than simulations with HYDRUS (2D/3D) on the workstation. Tests of the modified ParSWMS on two HPC clusters with 28 and 94 cores revealed a potential computational speedup of 94% relative to the HYDRUS (2D/3D) simulations performed on the workstation.
000890902 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000890902 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000890902 588__ $$aDataset connected to CrossRef
000890902 7001_ $$00000-0002-0166-6563$$aŠimůnek, Jirka$$b1
000890902 7001_ $$0P:(DE-Juel1)129466$$aHardelauf, Horst$$b2
000890902 7001_ $$0P:(DE-HGF)0$$aTuller, Markus$$b3$$eCorresponding author
000890902 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2021.126053$$gVol. 596, p. 126053 -$$p126053 -$$tJournal of hydrology$$v596$$x0022-1694$$y2021
000890902 8564_ $$uhttps://juser.fz-juelich.de/record/890902/files/Gohardoust_et_al_2021.pdf$$yPublished on 2021-02-10. Available in OpenAccess from 2023-02-10.
000890902 909CO $$ooai:juser.fz-juelich.de:890902$$popenaire$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access
000890902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129466$$aForschungszentrum Jülich$$b2$$kFZJ
000890902 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000890902 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000890902 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000890902 9141_ $$y2021
000890902 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000890902 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890902 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890902 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2019$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000890902 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000890902 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000890902 920__ $$lyes
000890902 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000890902 980__ $$ajournal
000890902 980__ $$aVDB
000890902 980__ $$aI:(DE-Juel1)IBG-3-20101118
000890902 980__ $$aUNRESTRICTED
000890902 9801_ $$aFullTexts