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Highlights  

- The ParSWMS code was adapted to simulate flow and transport in soilless substrates 
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- Preconditioner/solver combinations were tested to increase computational efficiency 

 

Keywords 

- Soilless culture 

- Water flow and solute transport 

- Numerical simulations 

- High performance computing 

- HYDRUS (2D/3D) 

- ParSWMS  

 

 

 

 

 

 

 

 

 

 



3 
 

Abstract 

Numerical simulation of three-dimensional water flow and solute transport in containerized 

variably saturated soilless substrates with complex hydraulic properties and boundary conditions 

necessitates high-resolution discretization of the spatial and temporal domains, which commonly 

leads to several million nodes requiring numerical evaluation. Even today’s computing prowess of 

workstations is not adequate to tackle such problems within a reasonable timeframe, especially 

when numerous realizations are required to optimize the geometry, substrate properties, and 

irrigation and fertigation management of soilless plant growth modules. Hence, the parallelization 

of the numerical code and utilization of high performance computing (HPC) are essential. Here, 

we adapted and applied the ParSWMS parallelized code that is amenable to solving the 3D 

Richards equation for water flow and the convection-dispersion equation for solute transport 

subject to linear solute adsorption. The code was modified to allow for nonlinear equilibrium solute 

adsorption with new boundary conditions and applied to simulate water flow and nitrogen and 

phosphorus transport in containerized soilless substrates. Multi-solute transport simulations with 

the modified Linux ParSWMS code were first performed on a workstation and referenced to the 

Windows-based HYDRUS (2D/3D) numerical code. After confirming the agreement between the 

modified ParSWMS code and HYDRUS (2D/3D), various preconditioners and iterative solvers 

were evaluated to find the computationally most efficient combinations. The performance of the 

modified ParSWMS code and its stability were compared to HYDRUS (2D/3D) simulations for 

three soilless substrates consisting of horticultural perlite, volcanic tuff, and a volcanic tuff/ 

coconut coir mixture. Considering the solute mass balance error as a stability measure, ParSWMS 

outperformed HYDRUS (2D/3D). Moreover, simulations with the modified ParSWMS code were 

about 22% faster than simulations with HYDRUS (2D/3D) on the workstation. Tests of the 

modified ParSWMS on two HPC clusters with 28 and 94 cores revealed a potential computational 

speedup of 94% relative to the HYDRUS (2D/3D) simulations performed on the workstation. 



4 
 

1. Introduction 

Because of the urgent need to secure and sustain the food and water supply for an ever-growing 

human population, especially in underdeveloped arid and semiarid regions of the world, and an 

increasing demand for out-of-season fruits, vegetables, and ornamentals in the industrial world, 

there is a momentous incentive to shift from soil-based crop production to more resource-efficient 

containerized soilless production systems (Raviv et al., 2019). Soilless substrates exhibit major 

advantages over soils. Besides the alleviated risk for spreading soilborne pathogens, their physical 

and hydraulic properties (i.e., plant water availability after irrigation and the aeration 

characteristics) are superior to those of arable soils (Savvas, 2003; Savvas and Gruda, 2018). 

Furthermore, the nutrient availability to plant roots can be better controlled in soilless substrates, 

which commonly leads to healthier plants and higher yields than in soil-based production (Raviv 

et al., 2019). It is even possible to tailor (i.e., engineer) substrates that exhibit specific physical 

and hydraulic properties beneficial for the growth of different crops. Though the same physical 

principles apply to both soilless substrates and soils, their physical and hydraulic properties are 

vastly different.  

In addition, there are fundamental differences with regard to dynamic water, air, and nutrient 

distribution processes and root growth and development between spatially confined growth 

containers and unconfined field soils. While an impermeable container bottom (with drainage 

holes) restricts water flow and nutrient transport in growth containers, water drains and 

redistributes to much deeper layers in agricultural soils unless natural impediments exist. This 

leads to vastly different infiltration and redistribution dynamics, requiring more intensive 

management of soilless systems (Gohardoust et al., 2020). 
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Taking into consideration that currently most of the soilless culture plant growth experiments are 

based on trial and error, three-dimensional (3D) numerical flow and transport simulations can 

provide a scientifically sound basis for a priori elimination of substrates with unfavorable growth 

potential, as well as guidance for growth module design and irrigation and fertigation management, 

thereby preventing costly mistrials. 

Today, numerical computer codes that solve the governing 3D water flow and solute transport 

equations are indispensable for advancing the understanding of complex porous media processes. 

However, intricate hydraulic properties and boundary conditions demand high-resolution 

discretization of the spatial and temporal domains, often leading to several million nodes requiring 

numerical evaluation (Šimůnek et al., 2016). Even the current computing prowess of workstations 

is not adequate to tackle such simulations within a reasonable timeframe, especially when 

numerous realizations are desired to optimize the geometry, soilless substrate properties, and 

irrigation and fertigation management of plant growth modules. Hence, parallelization of the 

numerical codes and utilization of high-performance computing (HPC) clusters are vital.  

Hardelauf et al. (2007) were among the first to develop a parallelized code for 3D simulation of 

water flow and solute transport that they termed ParSWMS. The code is based on the SWMS-3D 

model of Šimůnek et al. (1995), which numerically solves the Richards equation for 

saturated/unsaturated water flow and the convection-dispersion equation (CDE) for solute 

transport using a Galerkin-type linear finite element scheme. The resulting nonlinear partial 

differential equation (PDE) for water flow and the linear PDE for the CDE (i.e., assuming linear 

adsorption isotherms) are solved in SWMS-3D with preconditioned conjugate gradient and 

Orthomin (Vinsome, 1976) methods, respectively. In ParSWMS, Hardelauf et al. (2007) employed 

ParMETIS, an open source MPI-based library, to distribute the simulation to multiple processing 
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nodes, and the Portable, Extensive Toolkit for Scientific Computation (PETSc) library 

(https://www.mcs.anl.gov/petsc/) for preconditioning and solving the resulting system of linear 

equations. 

Driven by the need to execute a vast number of 3D flow and transport simulations to aid with the 

design and management of containerized plant growth modules, we adopted ParSWMS and 

modified the code to: (1) permit the simultaneous application of time-variable flux and free 

drainage boundary conditions (BCs) and allow for the time-variable flux BC to be treated as an 

atmospheric BC; and (2) enable multi-solute transport simulations with nonlinear equilibrium 

adsorption. These modifications are essential for the simulation of surface drip irrigation and to 

account for the nonlinear adsorption behavior of phosphorus and ammonium. 

Using HYDRUS (2D/3D) version 3.02.0560 (Šimůnek et al., 2018) as a reference, we first 

meticulously verified the modified ParSWMS code for a simple, yet realistic, soilless growth 

module setup. Thereafter, we focused on computational efficiency and evaluated a vast number of 

preconditioner/solver combinations for both water flow and solute transport based on a real growth 

module used in production scale greenhouse experiments. Subsequently, we benchmarked the 

soilless substrate flow and transport simulation results against HYDRUS (2D/3D) on a workstation 

with both Windows and Linux OS installed. As a final step, we executed the modified ParSWMS 

code on two HPC clusters to demonstrate the significant computational speedup relative to the 

HYDRUS (2D/3D) simulations performed on the workstation. Please note that for brevity we refer 

to HYDRUS instead of HYDRUS (2D/3D) in the following. 

 

 

https://www.mcs.anl.gov/petsc/
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2. Modifications to ParSWMS 

2.1 Boundary Conditions 

In the ParSWMS water flow simulation each node is assigned an integer code ranging from -6 to 6. 

While positive values are allocated to nodes with prescribed pressure heads, zero and negative 

values represent nodes with prescribed volumetric water fluxes. In the original ParSWMS code 

(Hardelauf et al., 2007) both time-variable flux and free drainage boundary nodes are assigned -3. 

Hence, these BCs cannot be used simultaneously. To resolve this issue, the free drainage boundary 

condition code was set to -6, similar as in HYDRUS, which was not allocated in the original 

ParSWMS. The discharge rate at a free drainage node n is determined as 𝑄(𝑛) =

−𝑤𝑖𝑑𝑡ℎ(𝑛) × 𝐾(ℎ), where 𝑤𝑖𝑑𝑡ℎ(𝑛) is the surface area associated with node 𝑛, and 𝐾(ℎ) is the 

hydraulic conductivity as a function of the pressure head ℎ.  

To account for stage-I (i.e., potential evaporation rate controlled by atmospheric demand) and 

stage-II (i.e., falling evaporation rate limited by the ability of the substrate to transmit water to the 

surface) evaporation, it is necessary to treat the variable flux BC imposed for simulating surface 

drip irrigation as an atmospheric BC. The atmospheric BC that is implemented in both HYDRUS 

and ParSWMS is expressed as (Neuman et al., 1974): 

{
 

 |𝐾 (𝐾𝑖𝑗
𝐴
𝜕ℎ

𝜕𝑥𝑗
+ 𝐾𝑖𝑧

𝐴)𝑛𝑖| ≤ 𝐸

𝑎𝑛𝑑
  ℎ𝐶𝑟𝑖𝑡𝐴 ≤ ℎ ≤ ℎ𝐶𝑟𝑖𝑡𝑆

 (1) 

where K is the hydraulic conductivity, 𝐾𝑖𝑗
𝐴 are the components of the anisotropy tensor 𝑲 

𝐴, xi 

(i=1,2,3) are the spatial coordinates, ni are the components of the outward unit vector normal to 

the atmospheric boundary, E is the maximum potential evaporation rate, and ℎ𝐶𝑟𝑖𝑡𝑆 and ℎ𝐶𝑟𝑖𝑡𝐴 
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are two limiting values for the surface pressure head ℎ. The Einstein summation convention is 

applied to Eq. (1), which implies summation over all possible values of the index in algebraic 

terms with repeated indices. While the ℎ𝐶𝑟𝑖𝑡𝑆 value specifies the maximum allowed pressure head 

at the soil surface (usually 0.0), the ℎ𝐶𝑟𝑖𝑡𝐴 value represents the minimum allowed surface pressure 

head defined based on equilibrium conditions between soil water and atmospheric vapor. The 

modified ParSWMS code now automatically switches between Dirichlet and Neumann boundary 

conditions for nodes with a variable flux BC if one of these limiting points is reached. 

2.2 Multi-Solute Transport with Nonlinear Equilibrium Adsorption  

To allow realistic simulations of phosphorus and ammonium transport processes in containerized 

soilless substrates, an option for nonlinear equilibrium solute adsorption was added to the modified 

ParSWMS code. The underlying CDE in ParSWMS is given as: 

𝜕𝜃𝑐

𝜕𝑡
+
𝜕𝜌𝑠

𝜕𝑡
=

𝜕

𝜕𝑥𝑖
(𝜃 𝐷𝑖𝑗

𝜕𝑐

𝜕𝑥𝑗
) −

𝜕𝑞𝑖𝑐

𝜕𝑥𝑖
+ 𝜇𝑤𝜃𝑐 + 𝜇𝑠𝜌𝑠 + 𝛾𝑤𝜃 + 𝛾𝑠𝜌 − 𝑆𝑐 (2) 

where 𝜃 is the volumetric substrate water content [L3 L-3], 𝑐 is the solution concentration [M L-3], 

𝑠 is the concentration adsorbed to the solid phase [M M-1], 𝜌 is the bulk density of the substrate 

[M L-3], 𝐷𝑖𝑗 is the dispersion coefficient tensor [L2 T-1], 𝑞𝑖  is the i-th component of the volumetric 

flux [LT-1], 𝜇𝑤 and 𝜇𝑠 are first-order rate constants for solutes in the liquid and solid phases [T-1], 

respectively, 𝛾𝑤 and 𝛾𝑠 are zero-order rate constants for the liquid [M L-3 T-1] and solid [T-1] phases, 

respectively, 𝑆 is the sink term in the water flow equation [T-1], and 𝑐 is the concentration of the 

sink term [M L-3] with potential 𝑖 and 𝑗 values of 1, 2, 3.  The equilibrium adsorption isotherm in 

its general form can be written as: 
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𝑠 =
𝑘𝑠𝑐

𝛽

1 + 𝜂𝑐𝛽
 (3) 

where 𝑘𝑠 [L
3βM−β] is the distribution coefficient, and 𝛽 [-] and 𝜂 [L3βM−β] are coefficients of the 

nonlinear Freundlich and Langmuir adsorption isotherm models, respectively. For linear 

adsorption 𝛽 = 1 and 𝜂 = 0 with units of [L3 M-]), for nonlinear Langmuir adsorption 𝛽 = 1, and 

for nonlinear Freundlich adsorption 𝜂 = 0. 

Substituting Eq. (3) into Eq. (2) yields a nonlinear differential equation that can be solved with 

nonlinear iterative schemes. Picard iteration was chosen for the nonlinear CDE in the same fashion 

as for the Richards equation. Note that numerical solvers and preconditioners specific for 

nonsymmetric matrices are required for the discretized CDE (see Section 3 below). To increase 

the computational efficiency, simultaneous multi-solute transport simulations (i.e., phosphorus 

and ammonium) were enabled in the modified ParSWMS code – again, similar as in the current 

version of HYDRUS. 

3. Hydraulic and Chemical Soilless Substrate Properties 

The selection of the three soilless substrates that were considered for the simulations was guided 

by production scale greenhouse tomato growth experiments at the Volcani Center in Israel. The 

substrates included perlite, volcanic tuff, and a 70/30 vol.-% volcanic tuff/coconut coir mixture. 

Horticultural perlite (Fig. 1a) is a natural amorphous volcanic glass that is formed through the 

hydration of obsidian. Perlite is commonly heated to 1000˚C, which causes structural water to 

evaporate and the volume to expand to about 4 to 20 times of its original size when rehydrated 

(Bar-Tal et al., 2019). The sieved perlite aggregates are light weight, inert, and pathogen free 

(Noland et al., 1992). 
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Tuff (Fig. 1b) is a pyroclastic volcanic material with high porosity and surface area. The mineral 

composition and weathering stage, in conjunction with physical alterations (i.e., grinding and 

sieving), determine its physicochemical properties (Silber et al., 1994). Tuff possesses a high 

buffering capacity and may adsorb and release nutrients throughout the growing season, especially 

phosphorus (Silber et al., 1999; Silber and Raviv, 1996). It exhibits bulk densities between 0.8 and 

1.5 g cm−3 and a total porosity ranging from 60 to 80%. 

Coconut coir consists of short and medium-length fibers of the mesocarp of Cocos nucifera L. that 

are left from various industrial applications. It exhibits remarkable physical and chemical 

characteristics such as high water holding capacity, good drainage and aeration properties, and 

high cation exchange capacity (Evans et al., 1996; Abad et al., 2005). It is commonly used as a 

surrogate for peat moss and mixed with mineral substrates such as tuff (Fig. 1c). 

 

Fig. 1. Soilless substrates considered for flow and transport simulations. (a) Perlite, (b) tuff, and 

(c) 70/30 vol.-% volcanic tuff/coconut coir mixture. 

The substrate water characteristics (SWC) were measured with Tempe cells (Soilmoisture 

Equipment Corp., Santa Barbara, CA) connected to a pressure manifold with a high-resolution 

pressure/vacuum regulator and gauge. Initially saturated samples were sequentially desaturated via 

application of increasing pressures after each equilibration phase. The saturated hydraulic 
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conductivities (𝐾𝑠𝑎𝑡) were measured with an automated constant head permeameter. Details about 

the SWC and 𝐾𝑠𝑎𝑡 measurements are provided in Gohardoust et al. (2020).  

After thoroughly testing several SWC models comprising the van Genuchten (1980) model, a 

modified version of the van Genuchten model (Vogel and Císlerová, 1988; Vogel et al., 2000), and 

the Brooks and Corey (1966) model, we found that the latter was best suited for mitigation of 

numerical instability issues caused by the extreme nonlinearity of the hydraulic conductivity 

function near saturation for all considered soilless substrates (Fig. 1). The Brooks and Corey (BC) 

SWC model is given as:   

{𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟) (
ℎ𝑏
ℎ
)
𝜆

     ℎ < ℎ𝑏

𝜃(ℎ) = 𝜃𝑠                                         ℎ ≥ ℎ𝑏

 (4) 

𝐾(ℎ) = 𝐾𝑠𝑎𝑡 (
ℎ

ℎ𝑏
)
−2−3𝜆

 (5) 

where ℎ is the pressure head, ℎ𝑏 is the air entry pressure (i.e., pressure threshold related to the 

onset of drainage of the largest pore in the system – a transition from fully to partially saturated 

conditions), 𝜃 is the water content expressed as a function of ℎ, 𝜃𝑠 is the saturated water content, 

𝜃𝑟 is the residual water content, 𝜆 is an empirical shape parameter, and 𝐾 is the hydraulic 

conductivity expressed as a function of ℎ. 

The parameters of the BC model were determined via least-square fitting to the measured 𝜃 − ℎ 

data pairs (Fig. 2), with SWC parameters and 𝐾𝑠𝑎𝑡 listed in Table 1.  
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Fig. 2. The Brooks and Corey (1964) SWC model fitted to the measured data for tuff (left), the 

70/30 vol.-% tuff/coconut coir mixture (center), and perlite (right). 

Table. 1. Parameters of the Brooks & Corey SWC model and measured 𝐾𝑠𝑎𝑡. 

Substrate 
𝜃𝑠 

(cm3 cm-3) 

𝜃𝑟 

(cm3 cm-3) 

ℎ𝑏 

(cm) 

𝜆  

(-) 

𝐾𝑠𝑎𝑡  

(cm h-1) 

Perlite 0.818 0.001 0.458 0.149 305.1 

Tuff 0.483 0.014 0.382 0.247 304.2 

Tuff/Coconut Coir 0.549 0.014 1.102 0.219 110.7 

The phosphorus and ammonium adsorption isotherms were measured with a combination of 

calorimetric spectrometry and inductively coupled plasma mass spectrometry. Details are provided 

in Gohardoust et al. (2020). The derived isotherm parameters are listed in Table 2. 
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Table. 2. Nonlinear adsorption isotherm parameters for phosphorus and ammonium. 

Substrate 

Nonlinear Langmuir 

Phosphorus Ammonium 

𝑘𝑠 
(cm3 g-1) 

𝜂 

(cm3 mg-1) 

𝑘𝑠 
(cm3 g-1) 

𝜂 

(cm3 mg-1) 

Perlite 17.71 984 147.19 3376 

Tuff 17.86 66 58.43 135 

Tuff/Coconut Coir 24.66 102 42.94 83 

 Nonlinear Freundlich 

 
𝑘𝑠 

(cm3βg−β) 

𝛽 

(-) 

𝑘𝑠 
(cm3βg−β) 

𝛽 

(-) 

Perlite 9.12 0.28 27.66 0.16 

Tuff 39.19 0.41 85.23 0.36 

Tuff/Coconut Coir 23.10 0.62 72.34 0.43 

 

4. Verification of the Modified ParSWMS Code 

Using HYRUS version 3.02.0560 (Šimůnek et al., 2018) as a reference, we meticulously verified 

the modified ParSWMS code using a simple domain representative of a containerized growth 

module (Fig. 3). We note that HYDRUS has been extensively tested for specific flow or transport 

problems based on analytical solutions and measured data (e.g., Cook et al., 2006; Kandelous and 

Šimůnek, 2010; Karlsson et al., 2015; Lassabatere et al., 2014; Luo and Sophocleous, 2010; 

Neumann et al., 2011; Vanderborght et al., 2005), and code-to-code validation is an scientifically 

accepted approach (e.g., Greenwald, 2010; Hardelauf et al., 2007; Kačur and Minár, 2013; 

Orgogozo et al., 2014).  

To mimic irrigation and fertigation with drip emitters, water, phosphorus, ammonium, and nitrate 

were applied to the surface within two circles with variable flux BCs. When no water or solutes 

were applied, the variable flux BC was treated as an atmospheric BC to conform with the 

remaining evaporating substrate surface. The 70/30 vol.-% tuff/coconut coir mixture (see Table 1 
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for hydraulic parameters), which was dry (i.e., -5000 cm pressure head) at the start of the 

simulation, was used for validation. While nonlinear Langmuir adsorption was considered for 

ammonium (𝑁𝐻4
+) and phosphorus (𝐻2𝑃𝑂4

−) (see adsorption isotherm parameters in Table 2), 

nitrate (𝑁𝑂3
−) did not interact (i.e., adsorb) with the solid phase. The applied concentrations for 

𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, and 𝑁𝑂3
− were 20 mg l-1, 20 mg l-1, and 80 mg l-1, respectively. Water was applied 

every 8 hours at a rate of 1.0 l h-1 for 4 minutes with one-fourth allowed to evaporate. The 

longitudinal and transverse dispersivities were assumed to be 2.0 and 0.2 cm, respectively. The 

diffusion coefficients of 𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, and 𝑁𝑂3
− in water were assumed as 0.032, 0.063, and 

0.068 cm2 h-1, respectively. Similar values have been reported in Buffle et al. (2007) and Hashitani 

and Tanaka (1983). The water content tolerance was set to 2×10-5 cm3 cm-3, and the absolute and 

relative concentration tolerances were set to 10-6 mmol cm-3 and 10-3, respectively. The flow and 

transport domains were discretized with finite elements of 1.4-cm in the horizontal direction and 

0.7-cm in the vertical direction. Mesh refinements for the top 1-cm layer (i.e., using half of the 

finite element size) led to a total of 25,264 spatial nodes. The temporal discretization was 

dynamically calculated throughout the simulation based on the specified initial time step of 2.4E-7 

hr. The total simulation time was ten days. 

Input files for the modified ParSWMS code were generated with the “Export to ParSWMS” 

function in HYDRUS. To extract and analyze ParSWMS simulation results, dedicated MATLAB® 

– Version R2019b (MathWorks, Natick, MA, USA) scripts were created. The simulations were 

performed on a workstation with two 2.40GHz Intel® Xeon® E5-2630 v3 processors. The hard 

drive was partitioned with Windows 10 Pro (Version 1909, OS Build 18363.1016) as well as 

Ubuntu 18.04.5 LTS installed to run the HYDRUS and modified ParSWMS codes, respectively. 
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Fig. 3. Flow domain geometry with water flow (top) and solute transport (bottom) BCs. The 

Cauchy-1 BC is used for the solute concentrations at the top atmospheric and bottom free drainage 

boundaries. The Cauchy-2 BC is used for the solute concentrations at the drip irrigation 

boundaries.  

The modified ParSWMS and HYDRUS water flow and solute transport simulation results were 

compared at the end of the simulations based on the normalized root mean squared error (NRMSE) 

given as:   

𝑁𝑅𝑀𝑆𝐸 =  
√1
𝑁
∑ (𝐶𝑃𝐴𝑅𝑆𝑊𝑀𝑆𝑖 − 𝐶𝐻𝑌𝐷𝑅𝑈𝑆𝑖)
𝑁
𝑖=1

𝐶𝐻𝑌𝐷𝑅𝑈𝑆𝑚𝑎𝑥 − 𝐶𝐻𝑌𝐷𝑅𝑈𝑆𝑚𝑖𝑛
 

(6) 

where 𝐶 is the specific output quantity to be compared, and 𝑁 is the number of spatial nodes. 

The comparison of the modified ParSWMS and HYDRUS volumetric water content (𝜃) and 

𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, and 𝑁𝑂3
− concentration simulation results after 10 days are depicted in Fig. 4. The 
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coefficients of determination for 𝜃 and 𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, and 𝑁𝑂3
−  concentrations exceeded 0.999 

with associated NRMSEs of less than 1%, which indicates excellent agreement between HYDRUS 

and the modified ParSWMS code. This is further solidified by the very low mass balance errors of 

less than 0.3% for water and less than 2.5% for the solutes (Table 3). Notably, the mass balance 

errors of the modified ParSWMS code are below the errors of HYDRUS. 

 

Fig. 4. Comparison of the modified ParSWMS and HYDRUS volumetric water content (𝜃) (a) and 

𝐻2𝑃𝑂4
− (b), 𝑁𝐻4

+ (c), and 𝑁𝑂3
− (d) concentration simulation results for the 25264 spatial nodes 

after 10 days. 
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Table. 3. Cumulative water fluxes and mass balance information. 

 
Irrigation 

(cm3) 

𝐸𝐴𝑇𝑀
∗ 

(cm3) 

𝐸𝑉𝐹
† 

(cm3) 

𝐹𝐷‡ 

(cm3) 

ΔS𝑤
¶ 

(cm3) 

Mass Balance Error (%) 

Water 𝐻2𝑃𝑂4
− 𝑁𝐻4

+ 𝑁𝑂3
− 

ParSWMS 4001.86 902.8 49.13 912.5 2147.41 0.249 1.806 1.401 0.451 

HYDRUS  4001.88 902.7 48.88 912.9 2147.41 0.250 2.421 2.439 0.514 

* Water evaporation from areas with an atmospheric BC. 

† Water evaporation from areas with a variable flux BC when not irrigated. 

‡ Water loss from the free drainage boundaries. 

¶ Change in water storage. 

5. Evaluation of Preconditioners and Solvers 

To simulate water flow and solute transport, separate sets of linear equations need to be solved. 

To assure computational efficiency, it is imperative to apply the optimal preconditioner/solver 

combinations, which differ for flow and transport. The discretization of the associated partial 

differential equations via finite element or finite difference methods yields linear systems of the 

form: 

𝐴𝑥 = 𝑏 (7) 

with 𝐴 ∈ ℝ𝑁×𝑁 is the coefficient matrix, 𝑏 ∈ ℝ𝑁 is the right-hand side vector, and 𝑥 is the vector 

of unknowns.  

Depending on the extent of the problem, direct or iterative solvers may be employed to solve Eq. 

(7). To enhance the numerical robustness and stability of ill-posed problems with very high 

condition numbers, sparse direct solvers are preferred despite their high memory usage and 

extended computation times, especially for large three-dimensional problems (Kwack et al., 2016; 

Duff and Scott, 2004; Benzi, 2002). On the other hand, sparse iterative solvers such as 

preconditioned Krylov subspace solvers can most efficiently handle massive linear equation 

systems (Dongarra and Sullivan, 2000). To resolve Eq. (7) iteratively, the solution is approximated 
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via constructing a sequence of 𝑥𝑛, starting with an initial guess 𝑥0, by moving in an affine subspace 

𝑥0 +𝒦 ⊂ ℝ𝑁. In order to create suitable subspaces 𝒦, methods containing efficient operations 

such as matrix-vector products (e.g., Krylov subspaces) are of great value (Del Corso et al., 2015). 

Assuming the residual of the 𝑛𝑡ℎ iteration 𝑟𝑛 = 𝑏 − 𝐴𝑥𝑛, Krylov subspace projection methods can 

be separated into three main categories (Golub and van der Vorst, 1997): (1) Ritz-Galerkin 

methods in which 𝑥𝑛 is constructed such that the residual is orthogonal to the current subspace – 

examples are conjugate gradients (CG), the full orthogonalization method (FOM) (Saad, 1981), 

and generalized conjugate gradients (GENCG) (Eisenstat et al., 1983); (2) minimum residual 

methods in which 𝑥𝑛 minimizes the second norm of the residual over 𝒦𝑛 – the generalized 

minimal residual (GMRES) (Saad and Schultz, 1986), the minimum residual (MINRES), 

ORTHOMIN (Vinsome, 1976), and ORTHODIR (Young and Jea, 1980) methods fall within this 

category; and (3) Petrov-Galerkin methods in which 𝑥𝑛 is determined so that the residual is 

orthogonal to some other n-dimensional subspace – the biconjugate gradient (Bi-CG) (Fletcher, 

1975) and quasi-minimal residual (QMR) methods (Freund and Nachtigal, 1991) are part of this 

category. In addition, there are hybrids of the above categories such as the conjugate gradient 

squared (CGS) (Sonneveld, 1989), biconjugate gradient stabilized (Bi-CGSTAB) (van der Vorst, 

1992), transpose-free quasi-minimal residual (TFQMR) (Freund, 1993), and flexible generalized 

minimal residual (FGMRES) (Saad, 1993) methods. 

In brief, preconditioning is applied to convert a given problem into a form that is more amenable 

for numerical solution (Herbst et al., 2008). This means that Eq. (7) is transformed to the form: 

𝑀1
−1𝐴 𝑀2

−1 𝑦 = 𝑀1
−1 𝑏,          𝑦 = 𝑀2 𝑥 (8) 
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where 𝑀1 and 𝑀2 are nonsingular matrices with inverses that can be rapidly and accurately solved. 

This leads to faster convergence and requires much less memory (Simoncini and Szyld, 2007).  

To find optimal preconditioner/solver combinations with regard to both robustness and 

computational efficiency, we consider a realistic flow and transport simulation applicable for 

soilless culture growth modules. Note that the optimal preconditioner/solver combinations differ 

for water flow and solute transport simulations as they exhibit symmetric and asymmetric 

coefficient matrices, respectively. Hence, they are evaluated separately. 

5.1 Preconditioners and Solvers for Water Flow 

Computational efficiency is essential when simulating flow and transport processes in complex 

porous systems, where intricate hydraulic properties and boundary conditions demand high-

resolution discretization of the spatial and temporal domains, often leading to several million nodes 

requiring numerical evaluation. This holds true for soilless plant growth modules, especially when 

numerous realizations are desired to optimize container geometry, soilless substrate properties, 

and irrigation and fertigation management.  

To evaluate potential preconditioner/solver combinations for water flow, we considered a typical 

growth module for greenhouse tomato production at the Agricultural Research Organization 

(ARO) Volcani Center in Israel (Fig. 5a), where water and nutrients are applied via surface drip 

emitters and the solution drains through circular openings in the bottom of the concrete containers 

(Fig. 5b). The 70/30 vol.-% tuff/coconut coir mixture with its hydraulic properties listed in Table 1 

was used as the substrate for the test case. The applied water flow and solute transport BCs are 

consistent with the flow domain depicted in Fig. 3. For water flow, this means an atmospheric BC 

at the top with ten circular inclusions with variable flux BCs to mimic surface drip irrigation (i.e., 

two angle arrow drippers per tomato plant) and seven openings at the bottom to allow for free 
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drainage. For root water uptake, a simple root distribution model (Vrugt et al., 2001a, 2001b) was 

considered for each of the five tomato plants (Šimůnek et al., 2018). While uptake conforms with 

the Feddes et al. (1978) water stress response function, the potential uptake rate was constrained 

at 13% of the evapotranspiration rate. Nutrients were applied together with irrigation water (see 

Section 4 for concentrations). Drip irrigation occurred every two hours for 2.75 minutes at a rate 

of 1.0 liter per hour per angle arrow dripper (i.e., a total of 5.5 liters were applied per day).    

 

Fig. 5. Greenhouse tomato growth trial at the ARO Volcani Center in Israel (a). Rendering of a 

concrete growth module used in the greenhouse trial (b). 

To consider heterogeneity, independent scaling factors for the pressure head and hydraulic 

conductivity function were introduced. The scaling factors were generated via sequential Gaussian 

simulation with the VISIM program (Hansen and Mosegaard, 2008) in the open source mGstat 

MATLAB® toolbox (Hansen, 2020) with a variance of 0.05, a mean value of 1.0, and correlation 

lengths of 4 and 2 cm in the horizontal and vertical directions, respectively. The spatial distribution 

of the hydraulic conductivity scaling factors within the flow domain is depicted in Fig. 6. 
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The flow domain was discretized with finite elements of 1.0-cm in the horizontal direction and 

0.5-cm in the vertical direction. Mesh refinements for the top 1-cm layer, and in areas with variable 

flux and free drainage BCs, led to a total of 408,848 nodes and 2,315,763 3D mesh elements. 

 

Fig. 6. Spatial distribution of the scaling factor (𝛼𝐾) for the hydraulic conductivity function within 

the flow domain. 

To solve Eq. (7) with its symmetric sparse coefficient matrix for water flow, a total of 15 

preconditioners and 13 solvers were considered (Tab. 4). All preconditioners and solvers, but two, 

were extracted from the Portable, Extensible Toolkit for Scientific Computation (PETSc) library 

(https://www.mcs.anl.gov/petsc/). Two preconditioners were incorporated from the High 

Performance Preconditioners (HYPRE) library (http://www.llnl.gov/CASC/hypre/) via the PETSc 

interface. The sparsity pattern of the coefficient matrix associated with the water flow simulation 

is depicted in Fig. 7. Because of the large number of considered preconditioner/solver 

combinations, the total time for each simulation was limited to 10 hours. The simulations were 

performed on the University of Arizona Puma HPC cluster with system specifications provided in 

Tab. S1. The number of cores (NC) utilized were 12, 24, 48, and 94, respectively.  

https://www.mcs.anl.gov/petsc/
http://www.llnl.gov/CASC/hypre/


22 
 

Table. 4. Preconditioners and solvers considered for the water flow simulations. 

Preconditioner Abbr. Solver Abbr. 

JACOBI (diagonal scaling) JACOBI Conjugate Gradient CG 

Block JACOBI* BJACOBI Conjugate Gradient Squared CGS 

Additive Schwarz (Restrict) ASM-R Flexible Conjugate Gradient FCG 

Additive Schwarz (Interpolate) ASM-I Pipelined FCG PIPEFCG 

Additive Schwarz (Basic) ASM-B Generalized Minimal Residual§ GMRES 

Additive Schwarz (None) ASM-N Deflated GMRES DGMRES 

Shared Blocks ASM (Restrict) GASM-R Loose GMRES§ LGMRES 

Shared Blocks ASM (Interpolate) GASM-I Biconjugate Gradient BICG 

Shared Blocks ASM (Basic) GASM-B Biconjugate Gradient Stabilized BCGS 

Shared Blocks ASM (None) GASM-N Improved Stabilized BICG IBCGS 

Successive Over Relaxation† SOR Enhanced BICG BCGSL 

Symmetric SOR (Eisenstat) EISEN Minimum Residual MINRES 

Classical Algebraic Multigrid‡ BOOMERAMG Chebyshev Iterative Method CHEBYSHEV 

Sparse Approximate Inverse‡ PARASAIL   

Geometric Algebraic Multigrid¶ GAMG   

*  Inner preconditioner for each block is ILU(0), i.e., incomplete lower-upper factorization with zero level fill. 
†  Equivalent to the block Jacobi with SOR on each block. 
‡  From the HYPRE library. BOOMERAMG with “HMIS” coarsen type, “ext+I” interpolation type, zero number of 

levels of aggressive, and 0.5 threshold value for being strongly connected. 
¶ GAMG with type ‘aggregate’ and one smoothing step. 
§ With restart parameter 60. 

 

Fig. 7. Sparsity pattern of the symmetric coefficient matrix for water flow simulations. 
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To compare the computational efficiency of various preconditioner/solver combinations, the wall 

clock time, which includes preconditioner setup and application time, as well as the time for solver 

application, was used as a metric. Figure 8 depicts the ten fastest preconditioner/solver 

combinations together with the ideal speedup line that is defined as the ratio of utilized cores and 

the number of cores used for the base case (i.e. 12): 

𝑇𝑝 =
𝑝𝑏𝑎𝑠𝑒
𝑝

 𝑇𝑏𝑎𝑠𝑒 (9) 

where 𝑇𝑝 is the simulation time when 𝑝 processors are utilized, and 𝑝𝑏𝑎𝑠𝑒 and 𝑇𝑏𝑎𝑠𝑒 are the number 

of processors used for the base case and the associated simulation time, respectively. The inset in 

Fig. 8 shows all successful combinations. As apparent, the choice of the preconditioner/solver 

combination significantly impacts computational efficiency, as the determined wall clock times 

vary by more than one order of magnitude. Note that some of the simulations with the GAMG 

preconditioner did not converge when 94 cores were utilized. The reported wall clock times 

represent the median of 5 separate simulation runs. The simulation speedup follows the ideal 

speedup line up to 48 cores, beyond which the performance starts to degrade. This is attributable 

to the increase of the communication to computation ratio (Hammond et al., 2014). For the 

executed simulations, the average number of nodes for each core was about 8500 and 4400 when 

utilizing 48 and 94 cores, respectively. This suggests that for optimal scalability, the minimum 

number of nodes per processor should fall within this range. 
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Fig. 8. Wall clock times for the ten most efficient preconditioner/solver combinations for 

simulation of water flow. The five most efficient combinations are represented by solid lines and 

symbols, the remaining five by dashed lines. The inset depicts all successful preconditioner/solver 

combinations. 

Because the order of the most efficient combinations is dependent on the number of cores (NC), 

the wall clock times were normalized by the smallest value for each NC group (i.e., 12, 24, 48, 

and 94) and then averaged. The five fastest combinations and their associated normalized times 

are listed in Table 5. Although the DGMRES solver applied in conjunction with the BJACOBI 

preconditioner performed better than other widely used solvers such as CG, the differences are 

minor between the five computationally most efficient combinations (Table 5). This leads to the 

conclusion that BJACOBI, which performs the incomplete lower-upper factorization in each block 

(with zero level fill), is the preconditioner of choice for our water flow simulations. This finding 

in general concurs with Herbst et al. (2008), who investigated the performance of five 
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preconditioners in combination with the CG solver for simulation of one- and three-dimensional 

water flow (i.e., Richards equation) in porous media. In contrast to their results, the algebraic 

multigrid preconditioner (GAMG) did not work well for our simulations, which is most likely 

because of the more complex water distributions within our flow domain due to the 

implementation of surface drip irrigation, root water uptake, and free drainage from the bottom 

boundary. 

Table. 5. The most efficient preconditioner/solver combinations for the water flow simulations. 

Rank Preconditioner/Solver Combination Normalized Time 

1 BJACOBI/DGMRES 1.0128 

2 BJACOBI/GMRES 1.0276 

3 BJACOBI/LGMRES 1.0450 

4 BJACOBI/CG 1.0704 

5 SOR/DGMRES 1.1407 

 

5.2 Preconditioners and Solvers for Solute Transport 

The test case for solute transport is identical to the test case in Section 5.1 with regard to water 

flow. In addition, 𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, and 𝑁𝑂3
− were applied with the irrigation water at 

concentrations of 20 mg l-1, 20 mg l-1, and 80 mg l-1, respectively. While nonlinear Langmuir 

adsorption was considered for ammonium (𝑁𝐻4
+) and phosphorus (𝐻2𝑃𝑂4

−), nitrate (𝑁𝑂3
−) did 

not interact with the solid phase. Fifteen preconditioners and 12 solvers were evaluated (Table 6). 
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 Table. 6. Preconditioners and solvers considered for the solute transport simulations. 

Preconditioner Abbr. Solver Abbr. 

JACOBI (diagonal scaling) JACOBI Transpose Free QMR§ TFQMR 

Block JACOBI* BJACOBI A Variant of QMR TCQMR 

Additive Schwarz (Restrict) ASM-R Generalized Minimal Residual|| GMRES 

Additive Schwarz (Interpolate) ASM-I Flexible GMRES|| FGMRES 

Additive Schwarz (Basic) ASM-B Deflated GMRES DGMRES 

Additive Schwarz (None) ASM-N Pipelined GMRES PGMRES 

Shared Blocks ASM (Restrict) GASM-R Pipelined Flexible GMRES PIPEGMRES 

Shared Blocks ASM (Interpolate) GASM-I LGMRES|| LGMRES 

Shared Blocks ASM (Basic) GASM-B Conjugate Gradient Squared CGS 

Shared Blocks ASM (None) GASM-N Stabilized Biconjugate Gradient BCGS 

Successive Over Relaxation† SOR Enhanced BICG BCGSL 

Symmetric SOR (Eisenstat) EISEN Improved Stabilized BICG|| IBCGS 

Classical Algebraic Multigrid‡ BOOMERAMG   

Sparse Approximate Inverse‡ PARASAIL   

Geometric Algebraic Multigrid¶ GAMG   

* Inner preconditioner for each block is ILU(0), i.e., incomplete lower-upper factorization with zero level fill. 
† Equivalent to BJACOBI with SOR on each block. 
‡ From the HYPRE library. The BOOMERAMG with “HMIS” coarsen type, “ext+i" interpolation type, zero number 

of levels of aggressive, and 0.5 threshold value for being strongly connected. 
¶ GAMG with type ‘aggregate’ and zero smoothing steps. 
§ QMR: Quasi Minimal Residual method. 
|| With restart parameter 60. 

 

The ten computationally most efficient preconditioner/solver combinations for solute transport are 

depicted in Fig. 9 together with the ideal speedup line. The inset shows all successful combinations, 

which vary over two orders of magnitude. As for water flow, the simulation speedup follows the 

ideal speedup line up to 48 cores and then the performance starts degrading. Combinations with 

the GAMG preconditioner were the least efficient. Although the GAMG preconditioner performed 

better for solute transport, it is not among the top-ranked. These results differ from Sbai and Larabi 

(2020), who simulated field scale chemical transport in groundwater. The deviations can be 

attributed to the consideration of adsorbing solutes in our simulations as well as the generally better 

performance of the GAMG preconditioner for large transport domains (Sbai and Larabi, 2020). 
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The most efficient combinations consisted of preconditioners of the successive over relaxation 

category (i.e., SOR and EISENSTAT) and variations of the GMRES solver. It should be noted that 

the parallel SOR and EISENSTAT preconditioners are equivalent to BJACOBI with SOR on each 

block and are therefore not true parallel preconditioners. As evident from Fig. 9 and Table 7, the 

SOR/FGMRES combination is best suited for our application.  

 

Fig. 9. Wall clock times for the ten most efficient preconditioner/solver combinations for 

simulation of solute transport. The five most efficient combinations are represented by solid lines 

and symbols, the remaining five by dashed lines. The inset depicts all successful 

preconditioner/solver combinations. 

Table. 7. The most efficient preconditioner/solver combinations for the solute transport. 

Ranking 
Preconditioner/Solver 

Combination  
Normalized Time 

1 SOR/FGMRES 1.0056 

2 EISENSTAT/DGMRES  1.0186 

3 EISENSTAT/GMRES 1.0312 

4 EISENSTAT/LGMRES  1.0421 

5 JACOBI/FGMRES 1.0810 
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6. Computational Efficiency and Stability of HYDRUS and the Modified ParSWMS 

As already indicated in Section 5, computational efficiency and stability are essential when 

simulating flow and transport processes in soilless plant growth modules, especially when a vast 

number of realizations is required. Hence, it is of interest to compare the Windows OS based 

HYDRUS with the Linux OS based modified ParSWMS. Because workstations and HPC clusters 

are not intercomparable, such comparison is only viable on a workstation, with both Windows 

(i.e., Windows 10 Pro Version 1909, OS Build 18363.1016) and Linux (i.e., Ubuntu 18.04.5 LTS) 

installed on a partitioned hard drive. A workstation with two 2.40GHz Intel® Xeon® E5-2630 v3 

Dual 8-Core processors and 32GB RAM was used for the comparison.  

HYDRUS benefits from a powerful GUI with numerous advanced features such as the ability to 

create or import complex domain geometries or to specify various spatially variable properties 

such as materials, initial conditions, boundary conditions, and domain properties either directly on 

the finite element mesh or on geometric objects independent of the mesh (Šimůnek et al., 2016). 

To utilize parallel computing and the computing prowess of the latest multicore workstations, 

HYDRUS relies on the HYdrus PARallelized (HYPAR) module and the Microsoft Parallel 

Patterns Library to numerically solve Eq. (7) for water flow and solute transport with the CG and 

ORTHOMIN solvers, respectively. Equation (7) is preconditioned with the incomplete lower 

upper factorization method. Both the solvers and the preconditioner are from the ORTHOFEM 

library (Mendoza et al., 1991).  

The test case for the stability and efficiency comparison conforms with the descriptions in Sections 

5.1 and 5.2, except that the SWC and hydraulic conductivity functions were not scaled for the 

considered tuff, tuff/coconut coir, and perlite substrates (see hydraulic properties in Tab. 1). The 

simulation duration was 14 days (336 hrs). The flow domain was discretized with finite elements 
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of 1.90-cm in the horizontal direction and 0.95-cm in the vertical direction. Mesh refinements for 

the top 1-cm layer and in areas with variable flux and free drainage BCs, led to a total of 132,570 

nodes and 726,264 3D mesh elements. Note that the hydraulic characteristics are calculated 

directly from the hydraulic functions by setting the lower and upper limits of the internal 

interpolation tables to zero in both HYDRUS and the modified ParSWMS code. The 

BJACOBI/DGMRES and SOR/FGMRES preconditioner/solver combinations were used for 

ParSWMS water flow and solute transport simulations, respectively.  

Figure 10 shows the temporal evolution of mass balance errors for water flow and 𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, 

and 𝑁𝑂3
− transport. The water mass balance errors are below 0.15% for all substrates for both the 

HYDRUS and ParSWMS simulations, which we consider quite accurate. The mass balance errors 

for solute transport are higher for both HYDRUS and the modified ParSWMS. An extreme error 

of about 80% for 𝑁𝑂3
− is evident for the HYDRUS simulation for tuff, which can be attributed to 

simulation instability issues starting at around 48 hrs. This is likely due to very localized increases 

in 𝑁𝑂3
− concentrations at the atmospheric BC because of evaporation (Fig. 11, bottom right). In 

comparison, the maximum mass balance error for 𝑁𝑂3
− and tuff simulated with the modified 

ParSWMS is 0.54%. Note that the instability issues experienced with HYDRUS can be potentially 

resolved by increasing the density of the 3D mesh close to the surface at the cost of computational 

efficiency. Notably, the ParSWMS solute mass balance errors are significantly lower than the 

HYDRUS errors. 
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Fig. 10. Temporal mass balance error evolutions for water flow (left) and 𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, and 

𝑁𝑂3
− transport (right) simulated with both HYDRUS and the modified ParSWMS code. 
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Fig. 11. Water content and 𝑁𝑂3
− concentration distributions at the end of the HYDRUS and 

modified ParSWMS simulations. Note the localized very high 𝑁𝑂3
− concentrations depicted in 

the bottom right graph for HYDRUS. 

Figure 12 shows a comparison of computational efficiencies of the HYDRUS and modified 

ParSWMS codes. Besides the simulations performed on the workstation, we ran ParSWMS on the 

Ocelote HPC (28 cores) and the recently installed Puma HPC (94 cores) clusters (for specifications 

see Table S1) to demonstrate the massive increase in scalability when HPC environments are 

utilized. The simulation speedup expressed in terms of normalized wall clock times (see values on 

top of the bars in Fig. 12), of the modified ParSWMS code is about 22% faster than that of 

HYDRUS on the workstation, and about 94% faster on the Puma HPC cluster with 94 cores. Note 

that while an increase in the number of processing cores generally speeds up the simulations, 
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beyond a certain core threshold, the computational efficiency starts to decline due to an increase 

of the communication to computation ratio. 

 

Fig. 12. Comparison of computational efficiencies of the HYDRUS and the modified ParSWMS 

codes for perlite (left), tuff (center), and tuff/coconut coir (right). The values on top of the bars 

represent the clock times normalized with the HYDRUS clock times. 

Conclusions 

With the goal of performing a vast number of flow and transport simulations on HPC clusters to 

aid the design and management of soilless culture growth modules, we modified the open source 

3D ParSWMS code to not only enable nonlinear equilibrium solute adsorption and multi-solute 

transport simulations, but also the application of boundary conditions to realistically represent 

typical soilless culture systems. The modified ParSWMS code was thoroughly tested using 
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HYDRUS as a reference. To optimize the computational efficiency of the modified ParSWMS, 

numerous preconditioner/numerical solver combinations were tested for both the water flow and 

solute transport equations. While the BJACOBI/DGMRES preconditioner/solver combination was 

the most efficient for water flow, SOR/FGMRES worked best for solute transport. In general, 

GMRES-type and CG solvers applied in conjunction with the BJACOBI preconditioner were very 

efficient for water flow simulations. The most efficient combinations for solute transport consisted 

of preconditioners of the successive over relaxation category (i.e., SOR and EISENSTAT) and 

variations of the GMRES solver. To compare the stability and computational efficiency of 

modified ParSWMS with HYDRUS, a real growth module from a production scale greenhouse 

experiment at the ARO Volcani Center in Israel was simulated considering three soilless substrates 

and 𝐻2𝑃𝑂4
−, 𝑁𝐻4

+, and 𝑁𝑂3
− transport. The simulations were performed on a workstation and 

two HPC clusters. The results revealed that the modified ParSWMS was about 22% more efficient 

than HYDRUSwhen the simulations on the workstation were compared. Simulations on the HPC 

clusters were up to 94% more efficient when 94 cores were utilized. If the full computational 

power of the HPC clusters (i.e., no competing projects and up to 23616 available cores) was to be 

utilized, simulation times would again be drastically reduced to a very small fraction of the 

HYDRUS wall clock time. While we experienced some stability issues for tuff and 𝑁𝑂3
− with 

HYDRUS, leading to an unrealistically high mass balance error, all modified ParSWMS 

simulations were stable on both the workstation and HPC clusters. In general, all water and solute 

mass balance errors generated with the modified ParSWMS where bellow the mass balance errors 

of HYDRUS. 

The availability of the modified and tested ParSWMS code opens new avenues for streamlining 

3D water flow and solute transport simulations for complex porous media via the utilization of 
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HPC environments. Simulations that took days to complete can now be resolved within a matter 

of a few hours, allowing for a vast number of realizations within a short period of time.   
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Tab. S1. Specifications of the Ocelote and Puma HPC clusters. 

Ocelote HPC  

Model Lenovo NeXtScale nx360 M5 

Year 2016 (2018 P100 nodes) 

Node Count 400 

Total System Memory (TB) 82.6TB 

Processors 

2x Xeon E5-2695v3 14-core (Haswell) 

2x Xeon E5-2695v4 14-core (Broadwell) 

4x Xeon E7-4850v2 12-core (Ivy Bridge) 

Cores/Node (schedulable) 28c (48c-high-memory node) 

Total Cores 11528 

Processor Speed 2.3GHz (2.4GHz - Broadwell CPUs) 

Memory/Node 192GB (2TB-high-memory node) 

Accelerators 
46 NVIDIA P100 (16GB) 

15 NVIDIA K80 

/tmp ~840 GB spinning (/tmp is part of root filesystem) 

HPL Rmax (TFlop/s) 382 

OS CentOS 6 

Interconnect FDR InfiniBand node-node; 10Gb Ethernet node-storage 

Puma HPC  

Model Penguin Altus XE2242 

Year 2020 

Node Count 236 CPU, 8 GPU, 2 High Memory 

Total System Memory (TB) 128TB 

Processors 2x AMD EPYC 7642 48-Core (Rome) 

Cores/Node (schedulable) 94c 

Total Cores 23616 

Processor Speed 2.4GHz 

Memory/Node 512GB (3TB - High-memory nodes) 

Accelerators 29 NVIDIA V100S 

/tmp ~1640 GB NVMe (/tmp is part of root filesystem) 

OS CentOS 7 

Interconnect 
1x 25Gb/s Ethernet RDMA (RoCEv2) 

1x 25Gb/s Ethernet storage 

 


