000890906 001__ 890906
000890906 005__ 20210627010125.0
000890906 0247_ $$2doi$$a10.1109/TGRS.2020.2991252
000890906 0247_ $$2ISSN$$a0018-9413
000890906 0247_ $$2ISSN$$a0196-2892
000890906 0247_ $$2ISSN$$a1558-0644
000890906 0247_ $$2Handle$$a2128/27353
000890906 0247_ $$2WOS$$aWOS:000603079000012
000890906 0247_ $$2altmetric$$aaltmetric:103363732
000890906 037__ $$aFZJ-2021-01237
000890906 082__ $$a550
000890906 1001_ $$00000-0002-1760-2425$$aJagdhuber, Thomas$$b0
000890906 245__ $$aEstimation of Vegetation Structure Parameters From SMAP Radar Intensity Observations
000890906 260__ $$aNew York, NY$$bIEEE78494$$c2021
000890906 3367_ $$2DRIVER$$aarticle
000890906 3367_ $$2DataCite$$aOutput Types/Journal article
000890906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615465410_13650
000890906 3367_ $$2BibTeX$$aARTICLE
000890906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890906 3367_ $$00$$2EndNote$$aJournal Article
000890906 520__ $$aIn this article, we present a multipolarimetric estimation approach for two model-based vegetation structure parameters (shape A and orientation distribution ψ of the main canopy elements). The approach is based on a reduced observation set of three incoherent (no phase information) polarimetric backscatter intensities (|S HH | 2 , |S HV | 2 , and |S VV | 2 ) combined with a two-parameter (A P and ψ) discrete scatterer model of vegetation. The objective is to understand whether this confined set of observations contains enough information to estimate the two vegetation structure parameters from the L-band radar signals. In order to disentangle soil and vegetation scattering influences on these signals and ultimately perform a vegetation only retrieval of vegetation shape A and orientation distribution ψ, we use the subpixel spatial heterogeneity expressed by the covariation of co- and cross-polarized backscatter Γ PP-PQ of the neighboring cells and assume it is indicative for the amount of a vegetation-only co-to-cross-polarized backscatter ratio μ PP-PQ . The ratio-based retrieval approach enables a relative (no absolute backscatter) estimation of the vegetation structure parameters which is more robust compared to retrievals with absolute terms. The application of the developed algorithm on global L-band Soil Moisture Active Passive (SMAP) radar data acquired from April to July 2015 indicates the potential and limitations of estimating these two parameters when no fully polarimetric data are available. A focus study on six different regions of interest, spanning land cover from barren land to tropical rainforest, shows a steady increase in orientation distribution toward randomly oriented volumes and a continuous decrease in shape arriving at dipoles for tropical vegetation. A comparison with independent data sets of vegetation height and above-ground biomass confirms this consistent and meaningful retrieval of A P and ψ.
000890906 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000890906 588__ $$aDataset connected to CrossRef
000890906 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b1$$eCorresponding author
000890906 7001_ $$00000-0002-1366-9446$$aLopez-Martinez, Carlos$$b2
000890906 7001_ $$0P:(DE-HGF)0$$aBaur, Martin J.$$b3
000890906 7001_ $$00000-0001-5097-5525$$aLink, Moritz$$b4
000890906 7001_ $$00000-0002-1169-3098$$aPiles, Maria$$b5
000890906 7001_ $$0P:(DE-HGF)0$$aDas, Narendra Narayan$$b6
000890906 7001_ $$0P:(DE-Juel1)129478$$aJonard, Francois$$b7
000890906 773__ $$0PERI:(DE-600)241439-9$$a10.1109/TGRS.2020.2991252$$gp. 1 - 17$$n1$$p151-167$$tIEEE transactions on geoscience and remote sensing$$v59$$x1558-0644$$y2021
000890906 8564_ $$uhttps://juser.fz-juelich.de/record/890906/files/09099046.pdf
000890906 8564_ $$uhttps://juser.fz-juelich.de/record/890906/files/Jagdhuber2021.pdf$$yOpenAccess
000890906 909CO $$ooai:juser.fz-juelich.de:890906$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000890906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b1$$kFZJ
000890906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129478$$aForschungszentrum Jülich$$b7$$kFZJ
000890906 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000890906 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000890906 9141_ $$y2021
000890906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000890906 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000890906 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000890906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000890906 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000890906 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000890906 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890906 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000890906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000890906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000890906 920__ $$lyes
000890906 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000890906 980__ $$ajournal
000890906 980__ $$aVDB
000890906 980__ $$aUNRESTRICTED
000890906 980__ $$aI:(DE-Juel1)IBG-3-20101118
000890906 9801_ $$aFullTexts