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Abstract— In this research study we present a multi-

polarimetric estimation approach for two model-based vegetation 

structure parameters (shape 𝑨𝑷 & orientation distribution 𝝍 of

main canopy elements). The approach is based on a reduced 

observation set of three incoherent (no phase information) 

polarimetric backscatter intensities (|𝑺𝑯𝑯|𝟐, |𝑺𝑯𝑽|𝟐, |𝑺𝑽𝑽|𝟐)

combined with a two-parameter (𝑨𝑷 & 𝝍) discrete scatterer

model of vegetation. The objective is to understand if this 

confined set of observations contains enough information to 

estimate the two vegetation structure parameters from L-band 

radar signals. In order to disentangle soil and vegetation 

scattering influences on these signals and ultimately perform a 

vegetation-only retrieval of vegetation shape 𝑨𝑷 and orientation

distribution 𝝍, we use the sub-pixel spatial heterogeneity 

expressed by the covariation of co- and cross-polarized 

backscatter 𝚪𝑷𝑷−𝑷𝑸 of the neighboring cells and assume it is

indicative for the amount of a vegetation-only co-to-cross-

polarized backscatter ratio 𝝁𝑷𝑷−𝑷𝑸. The ratio-based retrieval

approach enables a relative (no absolute backscatter) estimation 

of the vegetation structure parameters which is more robust 

compared to retrievals with absolute terms.  

The application of the developed algorithm on global L-band 

SMAP radar data acquired from April to July 2015 indicates the 

potential and limitations of estimating these two parameters 

when no fully polarimetric data is available. A focus study on six 

different regions of interest, spanning land cover from barren 
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land to tropical rainforest, shows a steady increase of orientation 

distribution towards randomly oriented volumes and a 

continuous decrease in shape arriving at dipoles for tropical 

vegetation. A comparison with independent datasets of vegetation 

height and above ground biomass confirms this consistent and 

meaningful retrieval of 𝑨𝑷 and 𝝍. The retrieved shapes and

orientation distributions represent main vegetation elements 

matching literature results from model-based decompositions of 

fully polarimetric L-band data at the SMAP spatial resolution. 

Based on our findings, 𝑨𝑷 and 𝝍 can be directly applied for

parameterizing the vegetation scattering component of model-

based polarimetric decompositions. This should facilitate 

decomposition into ground and vegetation scattering components 

and improve retrieval of soil parameters (moisture & roughness) 

under vegetation. 

Index Terms— radar, polarimetry, scattering, vegetation 

structure, vegetation model, discrete scatterer, SMAP 

I. INTRODUCTION

HE advantage of radar signals at L-band (typically at

~1.26 GHz) is that in most cases major parts of the 

vegetation volume are penetrated and not just the top of the 

canopy as occurs at shorter wavelengths (e.g. C- and X-band) 

[1]. The backscattering signal is a mixture of soil and 

vegetation contributions, which need to be disentangled 

according to the focus of the study. The vegetation component 

contains important information for the characterization of 

plant biophysical parameters, such as shape, size, orientation 

and distribution of plant elements, water content, plant height, 

leaf area index, aboveground biomass, or plant stress [2], [3], 

[4], [5]. Both diurnal [6] and seasonal [7] time scales can be 

observed, making radar an important tool to assess process 

feedbacks in the soil-vegetation-atmosphere system [8].  

Main vegetation scattering methods consider vegetation as 

discrete dielectric scattering objects randomly located in space 

(e.g., [9]). First simple semi-empirical models simulated 

vegetation as a water cloud whose droplets are held in place 

by the vegetative matter [10]. In these water cloud models, the 

backscattering coefficient was treated as a function of the 

target parameters soil moisture, vegetation water content and 

plant height, where scattering and attenuation cross-section 

contributions of the signal path through the canopy were 

implemented. The canopy is regarded as a uniform layer of 

some specified height containing a random distribution of 

discrete scatterers, and only single scattering is accounted for 

[11]. Later, further parameters such as leaf size [12] and leaf 

area index [13] were introduced. Kweon and Oh in [14] 
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modified the water cloud model by implementing the average 

and standard deviation of leaf angle distribution for improved 

estimation of the backscattering coefficients with the angular 

effect of scattering particles in a vegetation canopy. However, 

the uniform random distribution of scatterers introduces 

inconsistencies during the vegetation parameter retrieval 

process mainly over forests. More advanced canopy scattering 

models such as the Michigan Microwave Canopy Scattering 

Model (MIMICS) were developed to better represent the 

transmission of energy through the multi-layer scattering 

medium. MIMICS divides the canopy into three components, 

i.e. the crown, the trunk and the underlying ground region

[15]. Here, probability density functions (PDFs) of size,

diameter and orientation of these three canopy components are

implemented. Typically, radar signals from vegetated surfaces

comprise contributions of direct backscatter from the

vegetation itself, backscatter from the soil that is attenuated by

the canopy and backscatter due to interactions between the

vegetation and the underlying soil [16]. Therefore,

polarimetric decomposition methods use, for instance, simple

physics-based scattering models to separate total scattering

from a target into its elementary scattering contributions [17].

Volume scattering from the canopy, surface scattering from a

rough ground and double-bounce scattering from ground and

stem are separated within the polarimetric covariance or

coherency matrix. Cloude and Pottier in [18] described target

scattering by eigenvectors to trace the scattering mechanism

and eigenvalues to characterize the intensity of each

mechanism.

Scattering from vegetation canopies is a result of multiple 

scattering within the canopy, and between the canopy and the 

ground [19]. Where early vegetation scattering studies focused 

on co-polarized backscatter (HH and VV; e.g. [12]), the 

inclusion of cross-polarized backscatter (HV and VH), 

indicative of these multiple scattering events, provided 

improved retrieval of vegetation information such as leaf area 

index and biomass in many studies (e.g., [20], [21]). Similar 

improvements were facilitated by implementing complex 

scattering mechanisms in the parameter retrieval. In addition 

to polarimetry, vegetation changes also impact the phase 

diversity [22], a research field currently not fully explored. 

Moreover, also synthetic aperture radar (SAR) tomography 

evolved during the last two decades towards three dimensional 

(3D) scattering response analysis for vegetation 

characterization or reconstruction by multi-baseline 

interferometric SAR [23], [24], [25], [26]. 

The problem of using advanced and more complex models 

to forward calculate radar backscatter is that a large number of 

parameters is needed. This data collection requirement may be 

attainable during intensive field campaigns, but it is too time 

consuming and expensive to be performed globally and 

regularly and for all types of vegetation covers [19]. Model 

inversion approaches to estimate those parameters typically 

make use of multi-angular [27], multi-frequency [28], multi-

temporal [29] observations, interferometry [30], [31] or a 

combination of multiple setups [32]. 

In this study we develop a multi-polarimetric estimation 

approach for vegetation structure parameters which is based 

on a reduced observation set of three incoherent (no phase 

information) polarimetric intensities, combined with a discrete 

scatterer model of vegetation. The research objective is to 

understand if this confined set of information can be sufficient 

to estimate vegetation structure parameters (shape and 

orientation distribution of main canopy elements). Hence, the 

requirement for this study is to develop a model-based 

approach to estimate two vegetation structure parameters with 

the limited observation set of three backscatter intensities 

(HH, VV, HV). The developed approach is applied to NASA’s 

Soil Moisture Active Passive (SMAP) radar intensity 

observations, which were recorded in the period from April 

13
th

 2015 to July 7
th

 2015. 

First, we describe the characteristics of the SMAP data and 

its pre-processing (Section II.). Second, the scattering 

mechanisms occurring in the vegetation canopy are explained 

(Section III. A.) and a sensitivity experiment to identify the 

importance of the two main vegetation parameters (shape 𝐴𝑃

and orientation distribution 𝜓 of main canopy elements) for 

the prediction of volume scattering is introduced (Section III. 

B.) and conducted (Section IV.A). An inverse retrieval 

approach for the mentioned vegetation parameters is 

developed in Sections III. C & III. D. An application of the 

proposed approach to SMAP active radar data is presented in 

Section IV.B and compared against independent datasets of 

vegetation height and biomass in IV.C. Results are discussed 

in Section V and conclusions are drawn in Section VI together 

with a short outlook to future research. 

II. DATA

The Soil Moisture Active Passive (SMAP) mission of 

National Aeronautics and Space Agency (NASA) was 

launched in 2015 to acquire active and passive microwave 

measurements and produce global maps of soil moisture and 

freeze/thaw-states in a three-days-cycle [41]. It was designed 

to record radiometer and SAR observations with a shared L-

band (1.26 GHz or H and 1.29 for V) horn antenna and a 

spinning mesh reflector [41], [47]. The data are acquired with 

a fixed incidence angle at 40° (off nadir) using a conical scan 

across a swath of 1000 km and at fixed local time (6 a.m.) 

[41]. The SAR instrument acquires backscatter (intensity, no 

phase) in HH and VV co-polarization and in one cross-

polarization (HV or VH) with a relative radiometric accuracy 

of 0.5 dB and a noise equivalent sigma zero (NESZ) of -30 dB 

[42], [48], [49]. Due to the malfunction of the SAR instrument 

on 7
th

 of July 2015, only an 11-week period of global 

acquisitions -from April 13
th

 until July 7
th

 2015- can be 

utilized for our analyses. Given this short acquisition period, 

we discard analyses of temporal dynamics due to limited 

statistical representativeness. 

SMAP space-borne multi-polarimetric SAR intensity 

observations (more specifically |𝑆𝐻𝐻|2, |𝑆𝑉𝑉|2 and |𝑆𝐻𝑉|2, see

section III) are available on a global basis for the measurement 

period [41], [42]. The SAR data is processed on a nominal 

spatial resolution of 3km (70% outer regions of swath) [47] 

[50], but resampled to 9 km posting [46]. A mask for deserts, 

water bodies and urban areas was applied to filter out areas 
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where the retrieval algorithm does not apply [43], [44]. Table I 

summarizes the SMAP radar data specifications. Further 

details are given in [42]. 

TABLE I: SPECIFICATIONS OF APPLIED SMAP RADAR DATA FOR 

INPUT INTO THE VEGETATION PARAMETER ESTIMATION 

ALGORITHM [42], [47] – [49]. 

Specification Global SMAP Level 2 radar data 

Frequency L-band

Polarizations HH, VV, HV (intensity, no phase) 

Acquisition period April 13, 2015 to July 7, 2015 

Temporal revisit 2-3 days (depending on latitude)

Incidence angle 40° (conical scan) 

Spatial resolution 9 km (re-gridded from 3 km) 

Radiometric resolution 0.5 dB 

NESZ -30 dB

Incidence angle 40° 

The 2005 MODIS MCD12Q1 International Geosphere-

Biosphere Program (IGBP) collection 5 land cover product is 

used in Section IV to interpret the estimation results on model-

based vegetation structure parameters (𝐴𝑃, 𝜓) in terms of 17

land cover classes. It is a global product with 500m spatial 

resolution and freely available from the U.S. Land Processed 

Distributed Active Archive Center (www.lpdaac.usgs.gov). 

Independent data sets of vegetation height & above ground 

biomass were selected for later comparison of the retrieved 

vegetation structure parameters (in Section IV.C). The 

vegetation height data is based on LiDAR measurements of 

the Geoscience Laser Altimeter System (GLAS) sensor on the 

ICESat platform combined with climatology and remote 

sensing of the optical bands [51]. The above ground biomass 

estimates is derived from the ESA GlobBiomass project for 

the year 2010 by combining space-borne SAR, LiDAR and 

optical observations together with auxiliary datasets from 

forest inventories, climatological variables and ecosystems 

classifications [52]. Both datasets were re-gridded to match 

the SMAP radar data (9 km grid). 

III. INTENSITY-BASED VEGETATION PARAMETER ESTIMATION 

USING A DISCRETE SCATTERER MODEL 

Predictions for vegetation volume backscattering are often 

conducted by discrete vegetation scattering models [5], [7]. 

Here, discrete scattering elements of the vegetation canopy, 

also called inclusions, are brought into a homogenous 

background medium, mostly air in case of naturally vegetated 

environments [33], [34], [35]. This allows backscatter 

simulations from a (homogenously) filled layer of discrete 

inclusions on top of a single-scattering soil surface, like in 

[36].  

The following subsections (A to D) exemplify how radar 

intensity data (no phase information) can be used to retrieve 

vegetation properties by a model inversion approach. Part A 

serves as introduction into the discrete scattering model and 

the role of the different vegetation parameters. Part B presents 

a sensitivity analysis of the simulated backscatter to the two 

main vegetation parameters this study is aiming to infer: shape 

and orientation of the vegetation inclusions. Part C details the 

retrieval methodology proposed to estimate both vegetation 

parameters from radar observations. Part D deals with direct 

application of the approach to data from the SMAP mission. 

A. Polarimetric Discrete Scatterer Model and the Role of the

Vegetation Structure Parameters 𝐴𝑃 and 𝜓

A coherent discrete scatterer model for a single-layer 

vegetation volume is presented in (1) using covariance matrix 

notation [𝐶𝑉] [-]. It is derived and explained in detail in [37,

chapter 4.2.1.3], and is based on a vegetation model from 

Cloude [30]. This simplified discrete scatterer model, 

expressed with [𝐶𝑉] in single-channel form, simulates

polarimetric vegetation scattering of a volume filled with 

evenly distributed and uniformly shaped spheroids within air 

as background medium. The model follows the single 

scattering approximation and does not include multiple 

scattering effects. Among the wide suite of available 

vegetation models, it is selected due to its low 

parameterization (two variables), but sufficient flexibility to 

represent diverse vegetation scattering at longer wavelengths 

(L- & P-band) neglecting multiple scattering terms occurring 

at shorter frequencies (C- & X-band).  

[𝐶𝑉] = 𝐴 ∙ [

𝐶11
𝑉   0  𝐶13

𝑉

0 𝐶22
𝑉 0

𝐶31
𝑉 0 𝐶33

𝑉

] (1) 

with 

𝐶11
𝑉 =

1

8
(3𝐴𝑃

2 + 2𝐴𝑃 + 3 + 4(𝐴𝑃
2 − 1)Sinc(2𝜓) +

(𝐴𝑃 − 1)2Sinc(4𝜓)),

𝐶13
𝑉 =

1

8
(𝐴𝑃

2 + 6𝐴𝑃 + 1 − (𝐴𝑃 − 1)2Sinc(4𝜓)),

𝐶22
𝑉 =

1

4
(𝐴𝑃 − 1)2(1 − Sinc(4𝜓)),

𝐶31
𝑉 =

1

8
(𝐴𝑃

2 + 6𝐴𝑃 + 1 − (𝐴𝑃 − 1)2Sinc(4𝜓))
∗
,

𝐶33
𝑉 =

1

8
(3𝐴𝑃

2 + 2𝐴𝑃 + 3 − 4(𝐴𝑃
2 − 1)𝑆𝑖𝑛𝑐(2𝜓) +

(𝐴𝑃 − 1)2Sinc(4𝜓)),

𝐴 =
1

1+𝐴𝑃
2 , 

where Sinc(𝑥) = Sin(𝑥)/𝑥 and ‘*’ symbolizes the conjugate 

operator. 

It considers different vegetation conditions expressed by the 

particle anisotropy Ap [-] for the predominant shape of the 

main plant elements and by the orientation distribution width 

ψ [rad] for different degrees of vegetation orientation from 

totally aligned to randomly oriented [38]. Fig. 1 provides a 

conceptual understanding of these two parameters for 

canonical vegetation structure cases [38]. A particle 

anisotropy of zero indicates vertically oriented dipoles, 
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changing from vertical discs to spheres when increasing from 

zero to one. From one to infinity the shape changes from 

spheres to horizontal discs, ultimately reaching the shape of 

horizontal dipoles. An orientation distribution width of zero 

indicates completely aligned and oriented vegetation, while an 

increase of ψ leads to randomization of the vegetation 

structure until a complete loss of orientation (complete 

randomization) for a distribution width of 90°. 

Fig. 1. Conceptual view on the vegetation structure parameters: particle shape 

Ap (top) and orientation distribution width ψ (bottom) [38]. 

The distribution of the different orientation angles is assumed 

to be uniform within ψ. Hence, the probability of occurrence 

for the individual orientation angles within ψ is equal. 

In order to obtain a relative measure, which is easier to model 

and invert compared to absolute terms, the vegetation volume 

model in (1) can be normalized with the cross-polarized 

backscattering component |𝑆𝑃𝑄|
2

=
1

8
(𝐴𝑃 − 1)2(1 − 𝑆𝑖𝑛𝑐(4𝜓)) 

(half of 𝐶22
𝑉  in (1)) leading to (2).

Hence, 𝐶𝑁𝑜𝑟𝑚
𝑉11 and 𝐶𝑁𝑜𝑟𝑚

𝑉33 are the ratios of co- to cross-

polarization intensity and a function of the model-based 

vegetation structure parameters (𝐴𝑃 , 𝜓):

𝐶𝑁𝑜𝑟𝑚
𝑉11 =

|𝑆𝐻𝐻|2

|𝑆𝐻𝑉|2
= 𝜇𝐻𝐻−𝐻𝑉

𝑀𝑜𝑑𝑒𝑙 =

(3𝐴𝑃
2+2𝐴𝑃+3+4(𝐴𝑃

2−1)𝑆𝑖𝑛𝑐(2𝜓)+(𝐴𝑃−1)2𝑆𝑖𝑛𝑐(4𝜓))

(𝐴𝑃−1)2(1−𝑆𝑖𝑛𝑐(4𝜓))
, (3) 

. 𝐶𝑁𝑜𝑟𝑚
𝑉33 =

|𝑆𝑉𝑉|2

|𝑆𝐻𝑉|2
= 𝜇𝑉𝑉−𝐻𝑉

𝑀𝑜𝑑𝑒𝑙 =

(3𝐴𝑃
2+2𝐴𝑃+3−4(𝐴𝑃

2−1)𝑆𝑖𝑛𝑐(2𝜓)+(𝐴𝑃−1)2𝑆𝑖𝑛𝑐(4𝜓))

(𝐴𝑃−1)2(1−𝑆𝑖𝑛𝑐(4𝜓))
(4) 

Eq. (3) and (4) can be applied as forward model formulas for 

co-to-cross-polarized backscatter ratios of vegetation, or so-

called 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -parameters of the vegetation volume scattering

model. 

B. Design of Sensitivity Study for 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -Parameters with

Respect to 𝐴𝑃 and 𝜓

To investigate the sensitivity of 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -parameters to the

vegetation parameters (𝐴𝑝, 𝜓), we design a forward modelling

study. This leads to a deeper understanding of dependencies 

and to identify the best possible conditions for an observation-

based parameter inversion. We will show the behavior and 

trends of 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  with fixing either 𝐴𝑝 or 𝜓 and varying the

respective other parameter. This is done for a splitted 𝐴𝑝-

range of zero to one and from one to 108 due to different main

orientation (either vertical or horizontal). The results of the 

sensitivity study are shown in section IV.A. 

C. Development of a Retrieval Methodology for Vegetation

Parameters (𝐴𝑃, 𝜓)

Simplified vegetation models, like the one in (1), are 

implemented as standard components in model-based 

polarimetric decompositions for longer wavelengths to 

account for the vegetation scattering contribution [17], [30], 

[39]. Equation (5) shows the covariance matrices for a 

standard model-based decomposition architecture for 

vegetated agricultural soils [17]. It includes a soil surface 

scattering term [𝐶𝑆] [-], a vegetation volume scattering term

[𝐶𝑉] [-] and an interacting soil-vegetation double bounce

scattering term [𝐶𝐷] [-][17], [39]:

 [𝐶] = [𝐶𝑆] + [𝐶𝐷] + [𝐶𝑉]    (5) (5) 

This means in particular for a single co-polarized [𝐶]-matrix 

element |𝑆𝑃𝑃|2 [-] the decomposition can be specified as [39]:

|𝑆𝑃𝑃|2 = 𝑓𝑆|𝑆𝑃𝑃
𝑆 |2 + 𝑓𝐷|𝑆𝑃𝑃

𝐷 |2 + 𝑓𝑉|𝑆𝑃𝑃
𝑉 |2, (6) 

where the scattering matrix elements for the three polarimetric 

terms |𝑆𝑃𝑃
𝑆 |2, |𝑆𝑃𝑃

𝐷 |2 and |𝑆𝑃𝑃
𝑉 |2 are included with their

respective lossy intensity components 𝑓𝑆 [-], 𝑓𝐷 [-] and 𝑓𝑉 [-

]. 

In polarimetric decomposition theory for longer wavelengths 

such as L- and P-bands, it is assumed that vegetation volume 

scattering dominates the cross-polarized backscatter and the 

soil roughness contribution stays minor [17], [18], [30]. As 

|𝑆𝑃𝑄|
2
 [-] is indicative of volume scattering, co-polarized

backscatter |𝑆𝑃𝑃|2 [-] can be corrected for a vegetation

contribution 𝑓𝑉|𝑆𝑃𝑃
𝑉 |2 by using the cross-polarized component

together with a co-to-cross polarized projection using the 

backscatter ratio 𝜇𝑃𝑃−𝑃𝑄 [-] [30], [37]:

Using 𝜇𝑃𝑃−𝑃𝑄|𝑆𝑃𝑄|
2

= 𝑓𝑉|𝑆𝑃𝑃
𝑉 |2 for (7) 

[𝐶𝑁𝑜𝑟𝑚
𝑉 ] =

1

8
(𝐴𝑃 − 1)2(1 − 𝑆𝑖𝑛𝑐(4𝜓))

[

(3𝐴𝑃
2+2𝐴𝑃+3+4(𝐴𝑃

2−1)𝑆𝑖𝑛𝑐(2𝜓)+(𝐴𝑃−1)2𝑆𝑖𝑛𝑐(4𝜓))

(𝐴𝑃−1)2(1−𝑆𝑖𝑛𝑐(4𝜓))
0

(𝐴𝑃
2+6𝐴𝑃+1−(𝐴𝑃−1)2𝑆𝑖𝑛𝑐(4𝜓))

(𝐴𝑃−1)2(1−𝑆𝑖𝑛𝑐(4𝜓))

0 2 0
(𝐴𝑃

2+6𝐴𝑃+1−(𝐴𝑃−1)2𝑆𝑖𝑛𝑐(4𝜓))
∗

(𝐴𝑃−1)2(1−𝑆𝑖𝑛𝑐(4𝜓))
0

(3𝐴𝑃
2+2𝐴𝑃+3−4(𝐴𝑃

2−1)𝑆𝑖𝑛𝑐(2𝜓)+(𝐴𝑃−1)2𝑆𝑖𝑛𝑐(4𝜓))

(𝐴𝑃−1)2(1−𝑆𝑖𝑛𝑐(4𝜓)) ]
(2) 
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𝑓𝐺|𝑆𝑃𝑃
𝐺 |2 = 𝑓𝑆|𝑆𝑃𝑃

𝑆 |2 + 𝑓𝐷|𝑆𝑃𝑃
𝐷 |2 = |𝑆𝑃𝑃|2 − 𝜇𝑃𝑃−𝑃𝑄|𝑆𝑃𝑄|

2
=

|𝑆𝑃𝑃|2 ∙ (1 − 𝜇𝑃𝑃−𝑃𝑄 ∙
|𝑆𝑃𝑄|

2

|𝑆𝑃𝑃|2
),    (8)

where 𝑓𝐺|𝑆𝑃𝑃
𝐺 |2 [-] is the vegetation-corrected ground

scattering term. As proposed in Jagdhuber et al. [40], the co-

to-cross-polarized backscatter ratio 𝜇𝑃𝑃−𝑃𝑄 will be linked to

χPP−PQ [dB/dB] from (9) to (11). χPP−PQ is a ground

backscatter-corrected (vegetation-only) co-to-cross-polarized 

backscatter ratio using the following assumption:  

χPP−PQ =
𝜎𝑃𝑃

𝐺 −𝜎𝑃𝑃

𝜎𝑃𝑄
=

𝜎𝑃𝑃
𝑉

𝜎𝑃𝑄
,    (9) 

where the backscatter of the vegetation (no ground 

contribution) 𝜎𝑃𝑃
𝑉  [dB] is defined as 𝜎𝑃𝑃

𝑉 = 10 ∙ 𝑙𝑜𝑔10 (1 −

𝜇𝑃𝑃−𝑃𝑄 ∙
|𝑆𝑃𝑄|

2

|𝑆𝑃𝑃|2
) and 𝜎𝑃𝑃

𝐺  is (8) transformed in decibel notation.

In addition, 𝜎𝑃𝑄 [dB] is the cross-polarized backscatter

coefficients. After re-arranging (9) and algebraic modification, 

χPP−PQ and 𝜇𝑃𝑃−𝑃𝑄 are directly linked by:

χPP−PQ ∙ 𝑙𝑜𝑔10 (|𝑆𝑃𝑄|
2
) = 𝑙𝑜𝑔10 (1 − 𝜇𝑃𝑃−𝑃𝑄 ∙

|𝑆𝑃𝑄|
2

|𝑆𝑃𝑃|2
)  (10) 

Solving for 𝜇𝑃𝑃−𝑃𝑄 leads to (11), which provides a direct

retrieval of a vegetation-only co-to-cross-polarized backscatter 

ratio in linear units, if χPP−PQ is known [40].

𝜇𝑃𝑃−𝑃𝑄 =
|𝑆𝑃𝑃|2

|𝑆𝑃𝑄|
2 ∙ (1 − (|𝑆𝑃𝑄|

2
)

 𝜒𝑃𝑃−𝑃𝑄
).  (11) 

In an application case, (9) - (11) can be used to retrieve 

𝜇𝑃𝑃−𝑃𝑄 from remote sensing data. Subsequently, the

theoretical connection between 𝜇𝑃𝑃−𝑃𝑄 and the vegetation

structure parameters 𝐴𝑝 and 𝜓 can be used for direct inversion

of these parameters. During the inversion process, predicted 

𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  and observed 𝜇𝑃𝑃−𝑃𝑄

𝐷𝑎𝑡𝑎 have to be compared and a 

minimization procedure must be established. However, 

𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙  and 𝜇𝑉𝑉−𝐻𝑉

𝑀𝑜𝑑𝑒𝑙  are unfortunately ambiguous with respect

to particle anisotropy 𝐴𝑃 (Ap=[0,1] for vertical shapes &

Ap=[1,] for horizontal shapes), having a symmetry of both 

modelled 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -values around 𝐴𝑃=1 (isotropic spherical

shapes). This is shown in more detail by the results of the 

sensitivity analysis in section IV.A.  

With this ambiguity of 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  regarding symmetry of 𝐴𝑃, the

most suitable parameter estimation procedure is a two-step 

approach. First, the vegetation orientation (𝜓) retrieval is done 

for a fixed particle anisotropy of vertical (𝐴𝑃=0) and

horizontal (𝐴𝑃=10000) dipoles for both polarization

combinations (HH-HV & VV-HV):  

ϕ 𝜓𝐴𝑃=10000,𝜇𝐻𝐻−𝐻𝑉
= min|𝜇𝐻𝐻−𝐻𝑉

𝐷𝑎𝑡𝑎 − 𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙 (𝐴𝑃 = 104, 𝜓)|,

ϕ𝜓𝐴𝑃=10000,𝜇𝑉𝑉−𝐻𝑉
=min|𝜇𝑉𝑉−𝐻𝑉

𝐷𝑎𝑡𝑎 − 𝜇𝑉𝑉−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙 (𝐴𝑃 = 104, 𝜓)|,

ϕ 𝜓𝐴𝑃=0,𝜇𝐻𝐻−𝐻𝑉
= min|𝜇𝐻𝐻−𝐻𝑉

𝐷𝑎𝑡𝑎 − 𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙 (𝐴𝑃 = 0,𝜓)|,

ϕ𝜓𝐴𝑃=0,𝜇𝑉𝑉−𝐻𝑉
= min|𝜇𝑉𝑉−𝐻𝑉

𝐷𝑎𝑡𝑎 − 𝜇𝑉𝑉−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙 (𝐴𝑃 = 0,𝜓)|.

(12) 

This ensures to include both major vegetation orientations 

(vertical and horizontal) in the retrieval. 

In (12) the two solutions of 𝜓 (𝜓𝐴𝑃,𝜇𝐻𝐻−𝐻𝑉
, 𝜓𝐴𝑃,𝜇𝑉𝑉−𝐻𝑉

) for

the respective particle anisotropy (vegetation shape) (𝐴𝑃 =
10000, 𝐴𝑃 = 0) have a split validity range around the

𝜇𝑃𝑃−𝑃𝑄-value of 3.0 due to the physics-given 𝐴𝑃–ambiguity of

the retrieval (see Fig. 2a and [30]). Therefore, the following 

validity ranges are applied to generate the final two 𝜓–

retrieval results (𝜓𝐴𝑃=0, 𝜓𝐴𝑃=10000) for vertical and horizontal

dipoles: 

In case of vertical dipoles (𝐴𝑃 = 0) this leads to the combined

𝜓𝐴𝑃=0-product:

𝜇𝐻𝐻−𝐻𝑉
𝐷𝑎𝑡𝑎 < 3.0 → 𝜓𝐴𝑃=0,𝜇𝐻𝐻−𝐻𝑉

𝜇𝑉𝑉−𝐻𝑉
𝐷𝑎𝑡𝑎 ≥ 3.0 → 𝜓𝐴𝑃=0,𝜇𝑉𝑉−𝐻𝑉

In case of horizontal dipoles (𝐴𝑃 = 10000) this leads to the

combined 𝜓𝐴𝑃=10000-product:

𝜇𝐻𝐻−𝐻𝑉
𝐷𝑎𝑡𝑎 ≥ 3.0 → 𝜓𝐴𝑃=10000,𝜇𝐻𝐻−𝐻𝑉

𝜇𝑉𝑉−𝐻𝑉
𝐷𝑎𝑡𝑎 < 3.0 → 𝜓𝐴𝑃=10000,𝜇𝑉𝑉−𝐻𝑉

Consistently from both analysis, two results are produced: 

𝜓𝐴𝑃=10000 and 𝜓𝐴𝑃=0.

The two data-derived co-to-cross polarized backscatter ratios 

(𝜇𝐻𝐻−𝐻𝑉
𝐷𝑎𝑡𝑎 , 𝜇𝑉𝑉−𝐻𝑉

𝐷𝑎𝑡𝑎 ) are used in a second retrieval step to

estimate the two 𝐴𝑃-products (𝐴𝑃
𝐻𝐻−𝐻𝑉 , 𝐴𝑃

𝑉𝑉−𝐻𝑉), applying the

assumption of a fixed 𝜓 of 90° (random volume) to ensure the 

same model sensitivities to both polarization combinations 

(see Section IV.A), and at the same time confining the 

retrievable information only to the shape of the particles. No 

assessment on orientation of their major axes (i.e. vertical or 

horizontal dipoles) is possible anymore when 𝜓 is fixed to 90° 

(cf. Fig. 2b): 

min𝐴𝑃
𝐻𝐻−𝐻𝑉|𝜇𝐻𝐻−𝐻𝑉

𝐷𝑎𝑡𝑎 − 𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙 (𝐴𝑃, 𝜓 = 90°)|,

min𝐴𝑃
𝑉𝑉−𝐻𝑉|𝜇𝑉𝑉−𝐻𝑉

𝐷𝑎𝑡𝑎 − 𝜇𝑉𝑉−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙 (𝐴𝑃 , 𝜓 = 90°)|, (13) 

Two sets of 𝜓- (𝜓𝐴𝑃=10000, 𝜓𝐴𝑃=0) and 𝐴𝑃-values

(𝐴𝑃
𝐻𝐻−𝐻𝑉 , 𝐴𝑃

𝑉𝑉−𝐻𝑉) are obtained with the proposed retrieval.

The two are thoroughly analyzed and compared with 

independent sources of vegetation height and biomass in 

Section IV.C. 

D. Adaption of Methodology for Application to Space-borne

SMAP Data

The methodology for vegetation parameter estimation 

developed in Section III is applied to global level-3 SMAP 

SAR data at L-band with fixed 40° incidence angle. It is 

important to note that only radar intensity (|𝑆𝐻𝐻|2, |𝑆𝐻𝑉|2,

|𝑆𝑉𝑉|2) data and not fully polarimetric complex-valued

measurements are provided from the active SMAP instrument. 

This is a challenging scenario, since phase information of the 

recorded microwaves would facilitate the retrieval. 
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The pre-processed and filtered SMAP dataset is used to 

determine the data-based co-to-cross-polarized backscatter 

ratios (𝜇𝐻𝐻−𝐻𝑉
𝐷𝑎𝑡𝑎 , 𝜇𝑉𝑉−𝐻𝑉

𝐷𝑎𝑡𝑎 ). It is important to mention that in the

special case of SMAP χPP−PQ in Eq. (11) is assumed

equivalent to Γ𝑃𝑃−𝑃𝑄 in the SMAP baseline algorithm

developed by [45], [53]. Here, Γ𝑃𝑃−𝑃𝑄 is calculated as the 9

km (medium-scale) sub-pixel heterogeneity between co- and 

cross-polarization 𝜕𝜎𝑃𝑃 and 𝜕𝜎𝑃𝑄 within one coarse-scale

resolution cell (36 km) [46]. This leads to: 

𝜇𝑃𝑃−𝑃𝑄 =
|𝑆𝑃𝑃|2

|𝑆𝑃𝑄|
2 ∙ (1 − (|𝑆𝑃𝑄|

2
)

 𝜒𝑃𝑃−𝑃𝑄
) ≅

 
|𝑆𝑃𝑃|2

|𝑆𝑃𝑄|
2 ∙ (1 − (|𝑆𝑃𝑄|

2
)

Γ𝑃𝑃−𝑃𝑄
). (14) 

Hence, the sub-pixel spatial heterogeneity, expressed by the 

covariation of co- and cross-polarized backscatter Γ𝑃𝑃−𝑃𝑄 in

the coarse-scale cell, is taken to be indicative for the amount 

of vegetation-only co-to-cross-polarized backscatter ratio 

𝜇𝑃𝑃−𝑃𝑄. Behind is the assumption that local spatial

heterogeneity, expressed by Γ𝑃𝑃−𝑃𝑄, for one time instant is

dominated by vegetation [40], [45], [49], [53]-[55]. 

IV. RESULTS OF VEGETATION PARAMETER RETRIEVAL USING 

SMAP DATA 

The results of the sensitivity analysis, the application to 

SMAP data and the comparison of the retrieved vegetation 

structure parameters with independent data sets of vegetation 

height and above ground biomass are presented in the 

following.  

A. Sensitivity Analysis of 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -Parameters with Respect to

Vegetation Structure Parameters 𝐴𝑃 and 𝜓

It is important to understand from Fig. 2a that the

dependencies of 𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙  and 𝜇𝑉𝑉−𝐻𝑉

𝑀𝑜𝑑𝑒𝑙  on the orientation angle

distribution width 𝜓 are equivalent, when either vertical

(𝐴𝑝=0) or horizontal (𝐴𝑝=10000) dipoles are assumed as

particle shapes.  

Note if particle shapes closer to spheres (𝐴𝑝 → 1) are

assumed, the congruent course of the two 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -curves in

Fig. 2a would not be given and the dependencies would differ 

significantly (not shown). This is why assuming dipoles as 

particle shape of the vegetation volume is crucial: the identical 

𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -trend for both dipole types enables a retrieval of the

orientation distribution width 𝜓 using only one 𝜇𝑃𝑃−𝑃𝑄–value.

The value of the respective 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  informs on whether the

main shape of the plant element has a horizontally (𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  =

[0,3]) or vertically (from 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  = [3,[) oriented major axis

or (see Fig. 2a). 

The dependence of 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  on the shape of the main plant

element 𝐴𝑝 is depicted in Fig. 2b for three vegetation volume

orientations (𝜓 = [10°, 45°, 90°]). If a randomly oriented 

volume (𝜓 = 90°) is assumed, then 𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙  and 𝜇𝑉𝑉−𝐻𝑉

𝑀𝑜𝑑𝑒𝑙  have

the same dependencies within an 𝐴𝑝-range from zero

(vertically oriented dipoles) to one (spheres) or from one to 

infinity (horizontally oriented dipoles). The more the 

vegetation volume is oriented (𝜓 = 10°), the more the curves 

of 𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙  and 𝜇𝑉𝑉−𝐻𝑉

𝑀𝑜𝑑𝑒𝑙  differ within the 𝐴𝑝-range of zero to

one due to different interaction of the polarized EM-waves 

with oriented (anisotropically scattering) vegetation. This is 

especially pronounced for low 𝐴𝑝–values. For 𝐴𝑝 around 1

(spheres), 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -values rise towards infinity.

Hence, for the 𝐴𝑝-range from one (spheres) towards positive

infinity (horizontal dipoles) the 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 -values decrease

monotonically, as depicted in Fig. 2c. The sensitivity of 

𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  for 𝐴𝑝 is lost at 𝐴𝑝-values around 1000 and therefore

an 𝐴𝑝-value of 10000 is already representative for horizontal

dipole. However, this advocates 𝐴𝑝-retrievals to be conducted

within the range of zero (vertical dipoles) to one (spheres) due 

to the higher sensitivity of 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙 .

a) b) 
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Fig. 2. Modelled vegetation-only co-to-cross-polarized backscatter ratio 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  [-] for different assumptions concerning vegetation shape (𝐴𝑝) or orientation 

distribution (𝜓); a) 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  [-] for vertical (𝐴𝑝=0) and horizontal (𝐴𝑝=10000) shapes along orientation distribution width 𝜓 from absolutely oriented (𝜓=0°) to 

randomly oriented (𝜓 = 90°); b) 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  [-] for strongly oriented (𝜓=10°), half-randomly (𝜓 = 45°) until totally randomly oriented (𝜓 = 90°) vegetation along 

vegetation shape 𝐴𝑝 from vertical dipoles (𝐴𝑝=0) until spheres (𝐴𝑝=1); c) 𝜇𝑃𝑃−𝑃𝑄
𝑀𝑜𝑑𝑒𝑙  [-] for strongly oriented (𝜓=10°), half-randomly (𝜓 = 45°) until totally 

randomly oriented (𝜓 = 90°) vegetation along vegetation shape 𝐴𝑝 from spheres (𝐴𝑝=1) towards horizontal dipoles (𝐴𝑝=5.0 ∙ 108 ) 

B. Estimation of vegetation structure parameters from global

SMAP Radar Data

In this section the developed method is applied on SMAP 

radar data for global analysis and for detailed regional analysis 

of vegetation structure parameters. The initial (non-vegetation-

filtered) input radar backscatter intensities [dB] are shown in 

Fig. 3 averaged over the SMAP active-passive acquisition 

period (04-07/2015).  

Fig. 3. Global comparison of measured, time-averaged SMAP backscatter 

intensities [dB]; a) |𝑆𝐻𝐻|2; b) |𝑆𝑉𝑉|2; c) |𝑆𝐻𝑉|2; Averaging was done over the

SMAP active-passive acquisition period (04-07/2015); inset shows histogram 

of respective backscatter intensity. 

They serve as basis for the subsequent estimation of 

vegetation structure parameters. The backscatter variations 

follow mainly the global land cover patterns from the tropical 

to the boreal and Tundra zones with low backscatter especially 

in arid and hyper-arid (deserted) regions. The co-polarized 

backscatter intensities (HH, VV) indicate distribution maxima 

around -10 dB, while the cross-polarized intensity (HV) has 

typically a lower distribution maximum around -15 dB (see 

inset histograms in Fig. 3). 

1) Global Analysis of Retrieved Vegetation Structure

Parameters

The developed vegetation parameter estimation method of 

Section III is applied to the space-borne SMAP data 

introduced in Section II. Both vegetation-only co-to-cross-

polarized backscatter ratios 𝜇𝐻𝐻−𝐻𝑉
𝐷𝑎𝑡𝑎 and 𝜇𝑉𝑉−𝐻𝑉

𝐷𝑎𝑡𝑎  are displayed

in Figs. 4a and 4b, together with the illustration of their 

differences in Figs. 4c and 4d. Figure 4d reveals a difference 

c) 

a) 

b) 

c) 

Page 13 of 38 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



for the two polarization combination with 𝜇𝑉𝑉−𝐻𝑉
𝐷𝑎𝑡𝑎  having the 

lower maximum of both 𝜇𝐷𝑎𝑡𝑎-parameters.

Fig. 4. Global comparison of retrieved, time-averaged vegetation-only co-to-

cross-polarized backscatter ratio 𝜇𝑃𝑃−𝑃𝑄 [-]; a) 𝜇𝐻𝐻−𝐻𝑉
𝐷𝑎𝑡𝑎 ; b) 𝜇𝑉𝑉−𝐻𝑉

𝐷𝑎𝑡𝑎 ; c) 

Absolute difference of both: |Δ𝜇| = |𝜇𝑉𝑉−𝐻𝑉
𝐷𝑎𝑡𝑎 − 𝜇𝐻𝐻−𝐻𝑉

𝐷𝑎𝑡𝑎 |; d) Histogram of 

𝜇𝑉𝑉−𝐻𝑉 and 𝜇𝐻𝐻−𝐻𝑉; Averaging was done over the SMAP active-passive 

acquisition period (04-07/2015) and blank land masses are masked non-

vegetated areas (see Fig. 4) or invalid retrievals. 

The most significant absolute difference, |Δ𝜇| shown in Fig. 

4c, occurs in semi-arid areas, (e.g. in the Sahel zone, Australia 

and Tundra regions) where small-scale spatial heterogeneity is 

distinct. In contrast, the highest similarity of both 𝜇𝐷𝑎𝑡𝑎-

parameters is at the tropical and subtropical regions, where the 

structure is complex, but spatially more homogeneous. Thus, 

both polarimetric retrievals lead to similar results. 

Using the methodology presented in Section III leads to the 

model-based vegetation structure parameters: orientation 

distribution width (𝜓) and particle anisotropy (𝐴𝑃). Since the

algorithm is executed as a two-step process, the orientation 

distribution width 𝜓 with pre-defined 𝐴𝑃–values (vertical

dipoles: 𝐴𝑃=0, horizontal dipoles: 𝐴𝑃=10000) are presented

first and afterwards the particle anisotropy 𝐴𝑃 with a fixed 𝜓–

value of 90°. Fig. 5 shows the global comparison of the 

estimated vegetation orientation distribution width 𝜓 averaged 

for the SMAP active-passive acquisition period (04-07/2015), 

while non-vegetated areas are masked out. 

Figs. 5a and 5b compare the global 𝜓-estimation for vertical 

and horizontal dipoles, both fixed inputs representing the 

shape of the main plant element. For randomly oriented 

volumes (tropical rainforest, temperate & boreal forest zones) 

both 𝜓-products indicate high values above 80°. Lower 𝜓-

values (40° < 𝜓 < 80°) are found within the global Savanna 

and grassland zones. Lowest values (𝜓 < 40°) are present 

close to arid (Sahara) and barren (Himalayas) regions.  

In addition, Fig. 5c reveals the absolute difference |Δ𝜓| 
between the two 𝜓-estimates. Small differences between 

𝜓𝐴𝑃=0 and 𝜓𝐴𝑃=10000 are found in highly vegetated areas of

the tropical vegetation belt where the complexity of the 

canopy cover lead to a random orientation in the model-based 

𝜓-estimation. Thus, the shape of the constituting particles is 

not an influential factor any more. This is different for the 

boreal and agricultural zones. Here the reduced complexity in 

vegetation structure (open forest) and the stronger orientation 

of crops (stalk- or leave-dominated plant structures) lead to 

significant differences between 𝜓𝐴𝑃=0 and 𝜓𝐴𝑃=10000.

However the majority of |Δ𝜓|-values stays below 15° (1/6 of 

value range), which indicates a certain degree of similarity. 

The histograms for both 𝜓-products in Fig. 5d expose similar 

patterns for the two retrievals and bi-modal distributions with 

local maxima between 35° and 65° as well as between 80° and 

90°. There exist no values lower than 10° and only few below 

20°. This means absolutely aligned vegetation structures, 

occurring most likely in agricultural areas, could not be 

detected, which might be due to the coarse grid of the SMAP 

radar sensor (9 km, aggregated from 3 km) with respect to the 

appearance and extent of strongly aligned vegetation within a 

kilometer-wide resolution cell. 

Fig. 6 displays double (red: 𝜓𝐴𝑃=0, blue: 𝜓𝐴𝑃=10000) box plots

for the different IGBP-based land cover classes (excluding 

urban, snow-covered and barren regions). Forests are located 

on a high level of 𝜓 between 60° and 90°, while crop-, wet- & 

grassland as well as open shrubs remain on a lower level pre-

dominantly between 30° and 60°. Closed shrubs, (woody) 

savanna and other natural vegetation exhibit intermediate 

levels of 𝜓 with 50° and 80°. Looking more closely to the 

difference between 𝜓𝐴𝑃=0 and 𝜓𝐴𝑃=10000 reveals that

especially the evergreen and deciduous needle-leaf forests as 

well as closed shrub land have distinctively different 

distribution width, when assuming different initial particle 

a) 

b) 

c) 

d) 

Δ𝜇 

𝜇𝐻𝐻−𝐻𝑉
𝐷𝑎𝑡𝑎

𝜇𝑉𝑉−𝐻𝑉
𝐷𝑎𝑡𝑎
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shapes. Hence, assumed vertical shapes (𝐴𝑃 = 0) lead to

stronger estimated orientation, meaning smaller distribution  

Fig. 5. Global comparison of time-averaged vegetation orientation distribution 

width (𝜓) [°]: a) Taking vertical dipoles (𝐴𝑃 = 0) 𝜓𝐴𝑃=0; b) Taking horizontal 

dipoles (𝐴𝑃 = 10000) 𝜓𝐴𝑃=10000; c) Difference of both: |Δ𝜓| =

|𝜓𝐴𝑃=0 − 𝜓𝐴𝑃=10000|; Histogram of 𝜓𝐴𝑃=0 and 𝜓𝐴𝑃=10000; Averaging was

done over the SMAP active-passive acquisition period (04-07/2015) and blank 

land masses are masked non-vegetated areas (see Fig. 4) or invalid retrievals. 

width 𝜓. 

Moreover, the box plots for 𝜓𝐴𝑃=10000 (horizontal dipoles)

unveil for woody savanna and closed shrub lands a wide range 

of 𝜓 from 50° to 85° for the interquartile period. This might 

be due to the variety in vegetation structure cases allocated to 

these land cover classes. 

Fig. 6. Box plots of retrieved time-averaged vegetation orientation distribution 

width (𝜓) [°] where red color indicates the assumption of vertical dipoles 

(𝐴𝑃 = 0) and blue color the assumption of horizontal dipoles (𝐴𝑃 = 10000);
Box plots are displayed for different IGBP-based land cover classes 

(excluding urban, cold and barren regions); The red horizontal line within 
each box indicates the median value; The box represents the interquartile 

region (25%-75%) and the whiskers show the extent to the minimum and 

maximum value of 𝜓. 

The particle anisotropy 𝐴𝑃 was retrieved globally assuming a

fixed 𝜓–value of 90° and is shown in Fig. 7 for the two 

polarization combinations (𝐻𝐻 − 𝐻𝑉, 𝑉𝑉 − 𝐻𝑉). The range 

of possible values stretches from zero, which indicates 

dipoles, via disks to spheres for an 𝐴𝑃-value of one. Figs. 7a

and 7b reveal that most of the values are close to zero and 

none exceeds 0.6 (disks).  

More in detail, dipole-representing values are dominant and 

can be found in the tropical, temperate and boreal forest 

regions. In contrast, higher values (𝐴𝑃 > 0.3) can be found

close to mountainous and tundra regions, whereby (semi-) arid 

regions do not necessarily exhibit the highest values (cf. 

Australia). The distribution of values for 𝐴𝑃
𝐻𝐻−𝐻𝑉 and 𝐴𝑃

𝑉𝑉−𝐻𝑉

in Fig. 7d support this observations and indicate the same 

range of values for both retrievals having just a different 

distribution from 0.01 until 0.35. The difference of both 

retrievals 𝛥𝐴𝑃 is visualized in Fig. 7c, where strongest

deviations occur for Savanna, crop- and shrublands as well as 

for evergreen and deciduous needle leaf forests mainly in 

higher Northern latitudes. 

Fig. 8 presents double (red: 𝐴𝑃
𝑉𝑉−𝐻𝑉, blue: 𝐴𝑃

𝐻𝐻−𝐻𝑉) box plots

for different IGBP-based land cover classes (excluding urban, 

cold and barren regions). For forested areas, closed shrub 

regions and woody savannas with distinct vegetation cover 

(60% and higher) 𝐴𝑃–values with a median below 0.1 (dipole-

type of shape) are predominantly encountered. In addition, 

open shrub, crops, grass- and wetlands show median values 

around 0.2 (more disk-like shape). 𝐴𝑃–values above 0.3 occur

only sparsely indicating the absence of sphere-like scattering. 

Moreover, the retrieval difference between 𝐴𝑃
𝑉𝑉−𝐻𝑉 and

a) 

d) 

𝜓𝐴𝑃=0

𝜓𝐴𝑃=10000

|Δ𝜓| 

b) 

c) 
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𝐴𝑃
𝐻𝐻−𝐻𝑉 is mostly above 0.05 except for evergreen as well as

deciduous broadleaf forest and grassland, where directionali- 

Fig. 7. Global comparison of retrieved time-averaged vegetation shape 

(particle anisotropy) 𝐴𝑃 [-] assuming a randomly oriented canopy (𝜓=90°): a) 

𝐴𝑃
𝐻𝐻−𝐻𝑉 from 𝜇𝐻𝐻−𝐻𝑉; b) 𝐴𝑃

𝑉𝑉−𝐻𝑉 from 𝜇𝑉𝑉−𝐻𝑉; c) Difference of both: 

Δ𝐴𝑃 = |𝐴𝑃
𝑉𝑉−𝐻𝑉 − 𝐴𝑃

𝐻𝐻−𝐻𝑉|; d) Histogram of 𝐴𝑃
𝑉𝑉−𝐻𝑉 and 𝐴𝑃

𝐻𝐻−𝐻𝑉; Averaging 

was done over the SMAP active-passive acquisition period (04-07/2015) and 

blank land masses are masked non-vegetated areas (see Fig. 4) or invalid 

retrievals. 

ties within the vegetation structure do not lead to polarization-

induced differences within the 𝐴𝑃–retrieval.

Fig. 8. Box plots of retrieved time-averaged vegetation shape (particle 

anisotropy) (𝐴𝑃) [-] where red color indicates the derivation from 𝜇𝑉𝑉−𝐻𝑉 and 

blue color the derivation from 𝜇𝐻𝐻−𝐻𝑉; Box plots are displayed for different
IGBP-based land cover classes (excluding urban, cold and barren regions); 

The red horizontal line within each box indicates the median value; The box 
represents the interquartile region (25%-75%) and the whiskers show the 

extent to the minimum and maximum value of 𝐴𝑃.

2) Analysis of Retrieved Vegetation Structure Parameters for

Different Regions of Interest

In order to gain detailed insights on the dependencies between 

vegetation conditions and the retrieved model-based 

vegetation structure parameters 𝐴𝑃 and 𝜓, six regions of

interest with spatially homogenous land cover were selected 

(see Fig. 9a). The exemplary regions feature different regimes 

for vegetation cover and plant moisture, as indicated by radar 

vegetation index (𝑅𝑉𝐼) in Fig. 9b [56], [57] and vegetation 

water content (VWC) [kg/m²] in Fig. 9c which was provided 

from SMAP-mission auxiliary data of [42]. The conditions 

stretch from high cover (𝑅𝑉𝐼~1.0) and moisture (VWC > 9 

kg/m²) within tropical rainforest of the Congo basin to no 

cover (𝑅𝑉𝐼~0.2) and no moisture (VWC < 0.1 kg/m²) within 

the Sahara and the Arabian Desert. In the analysis, savanna 

and grassland regions serve as reference with equivalent 

environmental conditions (𝑅𝑉𝐼~0.3, VWC~0.2 kg/m²), where 

only little deviations between retrieved vegetation structure 

parameters are anticipated. 

Fig. 10 displays box-plots of the retrieve results for the time-

averaged shape 𝐴𝑃 and vegetation orientation distribution

width 𝜓 of the vegetation from the six regions of interest. The 

most significant difference for both parameters occurs 

between the regions of forest-size vegetation cover (tropical 

rainforest and woody savanna) and the agriculture-size 

vegetated areas (agriculture, savanna, grassland and barren). 

In Fig. 10a, 𝐴𝑃 stays below 0.2 for the forest-size vegetation

and ranges mainly between 0.2 and 0.4 for agriculture-size 

plants. In addition, retrieved 𝜓-values in Fig. 10b vary 

between 50° and 90° for taller (forest) vegetation due to 

complex canopy structures and between 20° and 50° for 

agricultural types revealing more oriented and less random 

vegetation structures.  

b) 

a) 

d) 

c) 

𝐴𝑃
𝐻𝐻−𝐻𝑉

𝐴𝑃
𝑉𝑉−𝐻𝑉

𝛥𝐴𝑃
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Fig. 9. a) Global overview of the IGBP-based regions of interest for analysis 
of the developed vegetation parameter retrieval; Blue: tropical rain forest 

(Africa), light green: woody savanna (Africa), red: agriculture (Europe), 

green: savanna (South America), orange: grassland (Asia), dark red: barren 
land (Africa); b) Vegetation cover indicated by the time-averaged radar 

vegetation index (RVI) [-] calculated according to [56], [57]; c) Plant moisture 

described by time-averaged vegetation water content (VWC [kg/m²]) provided 
by [42]; The red horizontal line within each box indicates the median value; 

The box represents the interquartile region (25%-75%) and the whiskers show 

the extent to the minimum and maximum value of 𝑅𝑉𝐼 [-] and VWC [kg/m²], 
respectively. 

The difference between the two results of 𝐴𝑃 and 𝜓, given for

each respective class due to polarization for 𝐴𝑃 and shape

assumption for 𝜓, is only minor (equivalent median-values in 

Fig. 10), except for the woody savanna region in Africa and 

the agricultural region in Europe. Moreover, the two control 

classes savanna and grassland state stable retrieval conditions 

by showing the same average estimation result (similar 

median for both retrievals), but grassland exhibits a wider 

variation for the inter-quartile area as well as for the outliers 

compared to the savanna class. Moreover the barren class 

shows the highest 𝐴𝑃-value (around 0.4) and the lowest 𝜓-

value (around 30°). 

Fig. 10. Box plots of retrieved time-averaged vegetation shape (particle 

anisotropy) 𝐴𝑃 [-] (a) and vegetation orientation distribution width 𝜓 [°] (b) 
for selected target areas: tropical rain forest (Africa), light green: woody 
savanna (Africa), red: agriculture (Europe), green: savanna (South America), 

orange: grassland (Asia), dark red: barren land (Africa); The red horizontal 

line within each box indicates the median value; The box represents the 
interquartile region (25%-75%) and the whiskers show the extent to the 

minimum and maximum value of 𝐴𝑃 and 𝜓, respectively.

C. Comparison of Retrieved Vegetation Structure Parameters

with Vegetation Height & Above Ground Biomass Datasets

A direct validation with in situ data for vegetation shape and 

main orientation (𝐴𝑃 and 𝜓) is intricate due to unavailability

of appropriate measurements representing these model-based 

parameter estimates and due to the scale gap between in situ 

measurements (meter scale) of monitoring networks and 

remote sensing estimates (kilometer scale).  

Hence, instead of validation with in situ measurements, which 

might be more or less of different type and therefore rather not 

comparable, an alternative strategy is suggested by globally 

comparing 𝐴𝑃- and 𝜓-estimates with independent remote-

sensing based products of above ground biomass and 

vegetation height. Both independently retrieved products are 

explained in detail in [51] and [52].  

It is anticipated that with increasing biomass and height of 

vegetation the orientation distribution proceeds towards 90° 

b) 

c) 

a) 

a) 

b) 
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indicating a random distribution of the vegetation elements 

due to increase in complexity of vegetation structure. Fig. 11 

confirms this anticipated trend for both vegetation parameters 

(biomass & height). Beyond 150Mg/ha and 30m height, the 

estimated vegetation orientation distribution ranges between 

 

Fig. 11. Box plots of retrieved time-averaged vegetation orientation 

distribution width (𝜓) [°] where red color indicates the assumption of vertical 

dipoles (𝐴𝑃 = 0) and blue color the assumption of horizontal dipoles (𝐴𝑃 =
10000); Box plots are displayed for different levels of above ground biomass 
[Mg/ha] [52] (a) and of vegetation height [m] [51] (b); The red horizontal line 

within each box indicates the median value; The box represents the 
interquartile region (25%-75%) and the whiskers show the extent to the 

minimum and maximum value of 𝜓. 

80° and 90° which indicates a large variety of plant element 

orientations in the vegetation canopy structure. Both 𝜓–

estimates (𝐴𝑃 = 0 & 𝐴𝑃 = 10000) follow similar trends along

vegetation biomass and height, but with differing intra-class 

variance especially for medium to low vegetation cover. It is 

interesting that the lowest class (0-5m) of vegetation height 

seems to be significantly biased by ground scattering 

influences (spatial and vertical heterogeneity of canopy) and 

shows higher values of 𝜓 than following (larger) vegetation 

height classes. This might be partly explained by the space-

borne LiDAR-based derivation methodology of the vegetation 

height dataset explained in [51].  

Figure 12 presents the shape of the vegetation elements, 

estimated from the SMAP L-band radar data, versus biomass 

and height of vegetation from independent datasets. It is 

expected that with increasing vegetation cover (biomass & 

height) the estimated elements of the canopy tend to a dipole-

like shape (𝐴𝑃 = 0). For biomass beyond 150-200Mg/ha and

heights above 30m this hypothesis is fulfilled. However, it has 

to be stated that even for medium to low vegetation biomass 

and height the absolute values for 𝐴𝑃 stay on a low level of 0.1

to 0.3, whereas the range of physically possible values extends 

until 1.0 (spheres). Moreover, 𝐴𝑃-estimates of both

polarimetric combinations (HH-HV & VV-HV) show similar 

trends, but different intra-class variance. This is more 

pronounced for low to medium vegetation cover (biomass < 

50Mg/ha and height < 20m).  

Figures 11 & 12 confirm by comparison with two independent 

vegetation datasets (above ground biomass & height) that 

estimates of orientation distribution and shape of vegetation 

elements are consistent with measurable vegetation properties 

and have a physical interpretation. 

 

Fig. 12. Box plots of retrieved time-averaged vegetation shape (particle 

anisotropy) (𝐴𝑃) [-] where red color indicates the derivation from 𝜇𝑉𝑉−𝐻𝑉 and 

blue color the derivation from 𝜇𝐻𝐻−𝐻𝑉; Box plots are displayed for different
levels of above ground biomass [Mg/ha] (a) and of vegetation height [m] (b); 

The red horizontal line within each box indicates the median value; The box 

represents the interquartile region (25%-75%) and the whiskers show the 

extent to the minimum and maximum value of 𝐴𝑃.

This is in line with Figs. 6, 8 and 10 showing the distribution 

of vegetation structure parameters (𝐴𝑃 & 𝜓) along (selected)

IGBP land cover classes. However, direct measurements of 

these model-based vegetation structure parameters are 

parsimonious to non-existent rendering a direct in situ 

validation as very challenging. 

a) 

a) 

b) 

b) 
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V. DISCUSSION 

The results in Section IV show the possibility to estimate 

model-based vegetation structure parameters (𝐴𝑃, 𝜓) from

three incoherent (no phase information), multi-polarimetric 

(|𝑆𝐻𝐻|2, |𝑆𝐻𝑉|2, |𝑆𝑉𝑉|2) SMAP L-band radar observations.

Numerous satellite missions can provide these measurements 

or have them archived (e.g. SMAP, ALOS-2, SAOCOM & 

AQUARIUS). Hence, the applicability can be broadened 

beyond SMAP to these other space-borne radar sensors as well 

as their planned successors like NISAR [58], Rose-L [59] or 

Tandem-L [60].   

However, the assumptions of having one layer of 

homogeneously filled spheroids as a vegetation model 

exhibiting only single scattering and no multiple scattering 

should be sufficient for L-band (and lower frequencies) 

application, but not for C-band and higher frequencies [61]. 

This limits the application to low microwave frequency 

sensors.  

Moreover, the penetration into the vegetation canopy 

decreases with increasing frequency [62]. In order to sense the 

entire above-ground vegetation canopy, longer wavelengths 

like L-band are preferred. Nonetheless, the results indicate so 

far that local spatial heterogeneity can be used to separate the 

ground and vegetation scattering component within the mixed 

(soil-vegetation) signal for a vegetation-only retrieval of the 

structure parameters (𝐴𝑃, 𝜓). This is subject to a potential

limitation for sparse vegetation cover where first results in 

[45], [54] and [63] indicate additional influences from the soil 

conditions on the radar signal. However, a dedicated study is 

needed to clarify these additional interfering influences in the 

future. 

 In addition, it has to be mentioned that the spatial resolution 

of the radar data and the extend of the neighboring area, which 

was used to estimate the local spatial heterogeneity, will 

reflect into the retrieval results for 𝐴𝑃 and 𝜓. Hence, a scale

transfer to higher or lower spatial resolution for structure 

representation might not be possible. 

It is important to understand that strongly oriented vegetation 

estimates with 𝜓-values lower than 20° do not occur for any 

land cover on the globe (see Fig. 6). This does not mean that 

this aligned vegetation type, e.g. stalk-dominated crops like 

barley or wheat, do not exist. It is rather the case that the 

coarse spatial resolution of the SMAP radar sensor (9 km, 

aggregated from 3 km) in contrast to the sparse appearance 

and small spatial extent of strongly aligned vegetation within a 

kilometer-wide resolution cell leads to an under-

representation. Hence, it would be interesting to apply the 

approach to higher-resolution SAR sensors, like ALOS-2, 

SAOCOM or NISAR, in a future study to see the difference in 

retrieved structure parameters and to understand if strongly 

aligned vegetation structures can be found at higher spatial 

resolution. 

When focusing on the retrieved 𝐴𝑃-values, it is unexpected

that 𝐴𝑃-values do not reach higher than 0.6, which is still

significantly different from spherical shapes (𝐴𝑃=1). However,

Fig. 2b indicates that the corresponding 𝜇𝑃𝑃−𝑃𝑄–values fed

into the 𝐴𝑃-retrieval need to have values of 20 and higher to

obtain these kind of 𝐴𝑃–values. Figures 4a and 4b indicate that

such high 𝜇𝑃𝑃−𝑃𝑄–values are not present in the global 𝜇𝑃𝑃−𝑃𝑄-

data from SMAP for vegetated soil regions.  

In addition, the retrieved vegetation structure parameters (𝐴𝑃,

𝜓) need to be understood in the light of a methodological 

limitation: The retrieval method is a two-step process, 

whereby the orientation distribution width 𝜓 is estimated first 

with pre-defined 𝐴𝑃–values (vertical dipoles: 𝐴𝑃=0, horizontal

dipoles: 𝐴𝑃=10000). This has the advantage that dependencies

of 𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙  and 𝜇𝑉𝑉−𝐻𝑉

𝑀𝑜𝑑𝑒𝑙  on the orientation angle distribution

width 𝜓 are equivalent, when either vertical (𝐴𝑝=0) or

horizontal (𝐴𝑝=10000) dipoles are assumed for respective

particle shape (see Fig. 2a). Moreover from Fig. 2a, both 

dipole selections (𝐴𝑝=0 & 𝐴𝑝=10000) are needed to obtain the

full information on the orientation angle distribution width 𝜓 

for one polarization combination.  

The particle anisotropy 𝐴𝑃 is retrieved assuming a fixed 𝜓–

value of 90°. With this assumption, 𝜇𝐻𝐻−𝐻𝑉
𝑀𝑜𝑑𝑒𝑙  and 𝜇𝑉𝑉−𝐻𝑉

𝑀𝑜𝑑𝑒𝑙  have

the same dependencies within an 𝐴𝑝-range from zero (fully

oriented dipoles) to one (spheres) (see Fig. 2b). It is 

recommended to extend the study at hand for the development 

of a single step approach under the support of fully 

polarimetric observations. Here, Bayesian methods may help 

to investigate the full parameter space. 

Moreover, it stays challenging to directly validate these 

model-based, space-borne radar resolution-scale vegetation 

structure parameters (𝐴𝑃 & 𝜓), as a fully equivalent in situ

measurement is non-existent, especially not at the size of 

satellite footprints. But sophisticated vegetation 

characterization is urgently needed for remote sensing signal 

decomposition to assess the conditions on ground below 

vegetation cover. 

Nevertheless, the retrieved vegetation structure parameters 

have practical implications on application of model-based 

polarimetric decompositions like in [17], [30], [39]. Here 𝐴𝑃

and 𝜓 can be used as adequate input parameters for the 

discrete scatterer model representing the vegetation. This 

should facilitate polarimetric decompositions of ground and 

vegetation scattering components and improve ground 

parameter retrieval, like for soil moisture and surface 

roughness [37], [38]. 

Szigarski et al. [56] analyzed the radar vegetation index (RVI) 

using forward simulations with the discrete particle scattering 

model of (1). They also calculated the RVI from global SMAP 

L-band radar data. They show that the classical RVI of [56]

needs to be corrected for soil scattering contributions at longer

wavelength, e.g. L-band. They suggest a multi-senor-based

correction in [56]. The retrieved vegetation structure

parameters in this study can be directly applied in the forward

model formulas for RVI, presented in [56], to calculate an

improved (vegetation-only) radar vegetation index for global

vegetation cover analyses. This might be especially helpful for

longer wavelength sensing (L- & P-band) where soil scattering

contributions are more likely included in the recorded signals.

The retrieved vegetation structure parameters might be also

helpful to parameterize the vegetation attenuation in passive
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microwave (radiometer) radiative transfer approaches using 

the classical model of Mo et al., 1982 [64]. Here 𝐴𝑃 and 𝜓 can

contribute to the simulation of the vegetation optical depth 

(VOD) using models, e.g. from Jackson & Schmugge, 1991 

[65].  

Moreover, environmental Earth System models might benefit 

from first-order estimations of shape and orientation 

distribution of main vegetation elements from the presented 

retrieval [66]. This fulfills the purpose to inform globally and 

at large spatial scales rather than locally with (tree- or stand-

based) in situ observations. 

VI. CONCLUSIONS AND OUTLOOK

In this research study, we presented a radar-based estimation 

approach for two model-based vegetation structure parameters 

(shape 𝐴𝑃 and orientation distribution 𝜓 of main canopy

elements). The approach is based on a small observation set of 

three incoherent (no phase information) polarimetric 

intensities (|𝑆𝐻𝐻|2, |𝑆𝐻𝑉|2, |𝑆𝑉𝑉|2) combined with a two-

parameter (𝐴𝑃 & 𝜓) discrete scatterer model. The objective

was to understand if this confined set of information can be 

sufficient to estimate these vegetation structure parameters 

from L-band signals.  

Hence, the sub-pixel spatial heterogeneity, expressed by the 

covariation of co- and cross-polarized backscatter Γ𝑃𝑃−𝑃𝑄 of

the neighboring cells, is taken to be indicative for the amount 

of vegetation-only co-to-cross-polarized backscatter ratio 

𝜇𝑃𝑃−𝑃𝑄 moving out soil scattering influences and allowing a

vegetation-only retrieval of vegetation shape 𝐴𝑃 and

orientation distribution 𝜓.  

However, the retrievals of the two parameters are not possible 

simultaneously, but consecutively, while a pre-assumption on 

either 𝐴𝑃 or 𝜓 has to be made. Hence, the retrievals are not

independent, but show adequate estimates for the different 

land covers and global spatial distributions. For instance, 

tropical forests indicate randomly oriented dipoles as 

predominant vegetation structure type which is already 

indicated in [17] and [67]. The focus study on six different 

regions of interest, spanning from barren land to tropical 

rainforest, shows a steady increase of orientation distribution 

towards randomly oriented volumes and a continuous decrease 

in shape arriving at dipoles for tropical vegetation. For the 

barren regions, e.g. Sahara, the highest 𝐴𝑃-value (around 0.4)

and the lowest 𝜓-value (around 30°) are obtained. 

A comparison with independently derived datasets of 

vegetation height and above ground biomass confirms the 

consistent and meaningful retrieval of 𝐴𝑃 and 𝜓. However, it

is a challenge to directly validate the model-based, space-

borne radar resolution-scale vegetation structure estimates (𝐴𝑃

& 𝜓), as a fully equivalent in situ measurement is non-

existent, especially not at the size of satellite footprints. 

Nonetheless, vegetation monitoring from space benefits from 

the proposed approach as also multi-polarimetric data (no 

phase information) can add value to assess vegetation 

structural parameters. In the light of upcoming space-borne 

active microwave missions (e.g. L- and S-band NISAR & P-

band BIOMASS [68]) the technique could be applied right 

away to characterize vegetation canopies on global and 

regional scales at S-, L- and P-band frequencies. This is 

especially relevant for NISAR, which has a significantly 

higher spatial resolution (in the order of meters) than the 

SMAP radar instrument (in the order of kilometers).  

Moreover, the retrieved vegetation structure parameters could 

be directly applied for the vegetation scattering component of 

model-based polarimetric decompositions. This should 

facilitate decomposition into ground and vegetation scattering 

components and improve retrieval of soil parameters (moisture 

& roughness) under vegetation. 
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