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Introduction
We develop a model of mouse somatosensory (barrel) cortex incorporating three
major classes of interneurons (PV, SOM and VIP cells) as a tool to study cortical
network dynamics and sensory signal processing.

Model Overview

•The simulation software NEST 2.16.0
[1] is used to create a multi-layer cor-
tical microcircuit model adapted from
Potjans & Diesmann [2].

•The neuron model is the leaky
integrate-and-fire neuron model.

• External input is provided by Poisson
spike trains and two hundred thalamic
cells.

• Synaptic short-term plasticities
(STPs) are included in the recurrent
connections.

Figure 1: Model overview. Excitatory
(black) and inhibitory (gray) recurrent con-
nections with probabilities ≥ 3% are shown
(widths indicate probabilities).

Network Ground State
•The ground-state firing rates of the populations in the optimized model are
comparable to those of in vivo data from [3].

Figure 2: Raster plot (left) and firing rates (right) of the optimized model. Filled and
hatched bars show simulation and in vivo data, respectively. Error bars show SEMs.

•Over a range of external input and relative inhibitory strengths, the model
is able to fulfill the criteria on firing rates, spiking irregularity, and pairwise
correlations of spike counts derived in [4].

Figure 3: Ground states
over different parameters. Firing
rates of each population (rExc,
rPV, rSOM, rVIP, spikes/s) over
different levels of relative in-
hibitory strength (g) and ex-
ternal input (rbg, spikes/s) are
shown by blue color. Dots in the
first column show where the sim-
ulations fulfill the criteria in [4]
(gray: fit in single layer, black:
fit in all layers). The red dots
indicate the parameters used in
Figure 2.

Network Dynamics

•The changes of firing rates in L2/3 in response to activation of PV, SOM, and
VIP cells show their respective roles of inhibition and disinhibition.

Figure 4: L2/3 network responses (normalized firing rates) to activation of different cell
classes. Dashed lines represent stimulated populations. rstim: firing rate of stimulus.

•The model with STPs shows clearer multi-layer spiking responses to simulated
transient thalamic input (100 spike/s, 10 ms) as compared to a version without
STPs.

Figure 5: Multi-layer responses of Exc cells to the thalamic input, showing the distribution
of cells in terms of mean spike latency (n of repetitions=10, bin=1 ms).

Outlook

• Further analysis of the model aided by mean-field theory [5] may reveal the
mechanisms behind these results and explore the specific roles of different
interneuron types in state-dependent modulation of sensory signal processing.

•As a model of barrel cortex, it is particularly suited to studying whisker sen-
sation, but it may also provide insights into the contributions of the distinct
interneuron types to other sensory processes, such as visual discrimination learn-
ing [6].
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