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ABSTRACT18

Microwave remote sensing is able to retrieve soil moisture (SM) at an adequate level of accuracy. However,19

these microwave remotely sensed SM products usually have a spatial resolution of tens of kilometers which20

cannot satisfy the requirements of high to medium scale applications such as agricultural irrigation and21
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local water resource management. Several SM downscaling methods have been proposed to solve this22

mismatch by downscaling the coarse-scale SM to fine-scale (several kilometers or hundreds of meters).23

Although studies have been conducted over different climatic zones and from different data sets with good24

results, there is still a lack of a comprehensive comparison and evaluation between them to guide the25

production of high-resolution and high-accuracy SM data. Therefore, in this study we compared several SM26

downscaling methods (from 0.25° to 0.01°) based on polynormal fitting, physical model, machine learning27

and geostatistics over the Qinghai-Tibet plateau with a range of climate conditions from the evaluation28

including four aspects, that is, comparison with the original microwave product, comparison with in situ29

measurements, inter-comparison based on three-cornered hat (TCH) method, and a spatial feasibility30

analysis. The comparison results show that the method based on a physical model, in this case the31

Disaggregation based on Physical And Theoretical scale Change (DisPATCh) method, has the highest32

ability on preserving the feature of original microwave SM product, while to some extent, this ability could33

be a disadvantage for improving the accuracy of the downscaling results. In addition, soil evaporation34

efficiency (SEE) alone is not sufficient to represent SM spatial patterns over complex land surface.35

Geostatistics based area-to-area regression Kriging (ATARK) introduces the highest uncertainty caused by36

the overcorrection during the residual interpolation process while this process can also improve correlation37

(R) and correct the bias as well as provide more feasible spatial patterns and details. Two machine learning38

methods, the random forest (RF) and Gaussian process regression (GPR) show high stability on all39

comparison results but provide smoother spatial patterns. The multivariate statistical regression (MSR)40

method performs worst due to the fact that its simple linear regression model could not meet the41

requirement of SM fitting on complicated land surface. Moreover, all five downscaling methods show a42

declining accuracy after downscaling, which may be caused by the spatial mismatch on fine-scale and a43
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tendency that downscaling results will usually provide more spatial details from downscaling predictors44

while they cannot capture the temporal changes of the microwave SM product well. In general, this45

phenomenon tends to be more significant over heterogeneous land surface.46

1. Introduction47

Soil moisture (SM) is a key state variable for its important role in water, energy and carbon cycles,48

although it accounts for a little part of the liquid water on earth only ( Mohanty et al., 2017; Montzka et al.,49

2017; Wu and Dickinson, 2004). It controls the process of evaporation, infiltration and runoff, governs50

vegetation water uptake, meanwhile it can be used to predict agricultural outputs, forecast flood/drought or51

wildfire events, and analyze climate changes (Alizadeh and Nikoo, 2018; Burapapol and Nagasawa, 2016;52

Madadgar et al., 2017; Schaefer and Magi, 2019; Wanders et al., 2014).53

Several microwave satellites have been launched to provide temporally continuous and spatially54

complete SM information with missions, such as the METOP-A/B Advanced Scatterometer (ASCAT)55

(Bartalis et al., 2007), the Advanced Microwave Scanning Radiometer for Earth Observing System56

(AMSR-E) (Brocca et al., 2011; Jackson et al., 2005), the Advance Microwave Scanning Radiometer 257

(AMSR2) (Parinussa et al., 2015), the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010), and58

the Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010). While the spatial resolution of these SM59

products is mostly at the scale of tens of kilometers, which cannot meet the research and application60

requirements at small and medium scale. Land surface process models, crop growth models and water61

management applications, for example, need SM information at higher resolution, i.e. several kilometers or62

even hundreds of meters (Crow et al., 2000; Fang et al., 2018).63

To fill this gap, many SM downscaling methods have been proposed to obtain fine scale SM64
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information from coarse scale microwave products (Merlin et al., 2016; Peng et al., 2017; Sabaghy et al.,65

2018). Most of these methods are based on SM predictors from the temperature/vegetation feature space66

(Merlin et al., 2016; Peng et al., 2015; Wang et al., 2016), polynomial fitting methods (Chauhan et al., 2003;67

Chen et al., 2019; Piles et al., 2016; Sánchez-Ruiz et al., 2014), model based downscaling methods (Ines et68

al., 2013; Montzka et al., 2018; Nasta et al., 2018), machine learning methods (Guevara and Vargas, 2019;69

Im et al., 2016; Long et al., 2019; Park et al., 2015; Srivastava et al., 2013), geostatistical method (Jin et al.,70

2018a; Kim et al., 2017; Song et al., 2019), data fusion methods (Das et al., 2014; Lorenz et al., 2018;71

Montzka et al., 2016; Narayan et al., 2006; Zhan et al., 2006), and data assimilation methods (Naz et al.,72

2020; Pellenq et al., 2003; Sahoo et al., 2013).73

Although different downscaling methods have been proposed and achieved good results, each type of74

the downscaling method has its own advantages, drawbacks, applicable conditions and assumptions.75

In this context, Peng et al. (2017) and Sabaghy et al. (2018) proposed systematic reviews of SM76

downscaling methods. Yu et al. (2008) used six downscaling methods based on linear interpolation and77

geographic weighted regression to successfully downscale SM from 25 km to 1 km in North America. The78

comparison results show that the methods based on geographic weighted regression have better79

performance and are less affected by the mosaic effect than linear extrapolation methods. Using the data80

from the Soil Moisture Experiments 4 (SMEX04) in southern Arizona, Kim and Hogue (2012) compared81

the soil wetness based method with the Disaggregation based on Physical And Theoretical scale Change82

(DisPATCh) method proposed by Merlin et al. (2009), and the temperature/vegetation feature space based83

polynomial fitting method. Results show the fine scale SM from the first two downscaling methods have84

higher accuracy. Wu et al. (2017) applied three SMAP based active-passive downscaling methods (official85

baseline algorithm, optional algorithm, and a change detection algorithm) from the Soil Moisture Active86
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Passive Experiment (SMAPEx) in Australia, with average root mean square errors (RMSE) of 0.019 m3/m3,87

0.021 m3/m3, 0.026 m3/m3 respectively. Liu et al. (2018a) compared four machine learning methods88

including classification and regression trees (CART), K-nearest neighbors (KNN), Bayesian, and random89

forests (RF) over Northeast China. Results show that RF performs the best, has high correlation with the90

original microwave product and the in situ data, followed by CART, KNN and Bayesian. Jin et al. (2018b)91

compared geographically weighted area-to-area regression kriging (GWATARK) with a quadratic92

regression model (QRM) and area-to-area regression kriging (ATARK) at the upper reaches of the Heihe93

river basin. Results show that GWATARK performs better than QRM and ATARK, with a 20% decrease of94

the root-mean-square error (RMSE) than original SM product. Zhao et al. (2018) compared the RF method95

with a polynomial fitting model for the Iberian Peninsula based on the Moderate-Resolution Imaging96

Spectro-radiometer (MODIS) and SMAP ascending/descending SM products. Results show that RF97

outperforms another method with an unbiased RMSE (ubRMSE) of 0.022 m3/m3. Kim et al. (2018) applied98

a support vector regression (SVR) method to downscale SM in southwestern South Korea and compared it99

with a polynomial fitting method, with RMSE of 0.07 m3/m3 and 0.09 m3/m3, correlation coefficient (R) of100

0.68 and 0.62, respectively.101

However, these studies are usually limited to the comparison of same or similar types of downscaling102

methods or from different weather and climate conditions, there is still a lack of applicability analysis as103

well as comprehensive and systematic evaluations of the SM downscaling methods over a specific area, to104

guide the generation of high-resolution and high-precision downscaled SM products. To solve this problem,105

Sabaghy et al. (2020) performed a relatively comprehensive comparison in Australia between radar-based,106

radiometer-based, optical-based, and oversampling-based downscaling methods, while these methods are107

usually limited by the lack of radar observations which can match up the existing radiometer observations108
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spatially and temporally (radar-based), or by the ability of medium-scale (9-10 km, radiometer-based and109

oversampling-based methods) downscaling results in satisfying the needs of fine-scale SM applications.110

Qinghai-Tibet plateau (QTP) is the source of seven major rivers in Asia, therefore, is also called the111

“water tower of Asia”. In addition, its high altitude makes it a hotspot to study global climate changes. As112

an important variable indicating the interaction between land surface and atmosphere, SM with113

high-resolution and high-precision over the QTP is badly needed. Therefore, in this study a more detailed114

downscaling methods comparison was conducted over this region with a wide range of climate, land cover,115

and altitude conditions. We evaluated more widely used SM downscaling methods, including physical116

model based method, polynomial fitting based method, machine learning based method and geostatistical117

based method. The methods were evaluated from four aspects, that is: (1) comparison of the downscaled118

with original SM; (2) comparison of the downscaled SM with in situ observations; (3) inter-comparison119

based on the three-cornered hat (Tavella and Premoli, 1994) method; and (4) comparison of the spatial120

feasibility based on spatial patterns and details.121

2. Study Area and Data122

2.1. Study Area123

With an average elevation of above 4000 m and a size of about 2.5 million km2, the Qinghai-Tibet124

plateau (QTP, 26.5°–40°N and 73°–105°E) is the highest and largest mountain plateau in the world. It is125

characterized by high-altitude permafrost and glaciers (Cheng and Wu, 2007), so that it acts as an important126

water reservoir in East Asia and is called “the third pole” and “water tower of Asia” (Yang et al., 2011).127
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128

Fig.1. The study area (Qinghai-Tibet plateau) and the location as well as land cover of the in situ sites.129

130

Most areas of the QTP are arid and semi-arid. In winter, controlled by Mongolian and Siberian highs,131

the climate of QTP is cold, arid and windy, while the climate is warm and wet in summer due to the Indian132

low (Ding et al., 2007). Precipitation mainly occurs from June to September, with relatively drier condition133

on winter and spring (Chen et al., 2013). As a major component of the global climate, water and energy134

cycles over the QTP play an important part in the Asian Monsoon (Zhang et al., 2003). The combination of135

high elevation with its special atmospheric, water and energy circulation, therefore, makes the QTP develop136

a series of “high-cold” vegetation types (Ni and Herzschuh, 2011). As shown in Fig. 1, the land cover137

distribution over the QTP follows a transitional gradient from the northwest to the southeast. The dry and138

cold climate resulted from high latitude and altitude on the northwestern QTP promotes barren land and139
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sparsely vegetated land cover. With increasing annual precipitation, the climate in the hinterland of the QTP140

changes to cold and wet, resulting in the development of high-cold meadow. Forests are found on the141

southeastern QTP, where the climate is warm and wet due to the lower altitude and latitude as well as the142

increase of precipitation.143

2.2. Data Sets144

2.2.1. Reconstructed Data145

Several applications of soil moisture (SM) records require longer time series. For researches on the146

status and trends of SM over high mountainous areas, the SMAP data record (2015 to present) might not be147

sufficient, while the AMSR-E/AMSR2 mission, however, has a longer time series (from 2002 to present)148

but with lower accuracy than SMAP (Cui et al., 2017; Liu et al., 2019; Ray et al., 2017; Zeng et al., 2016).149

Qu et al. (2019) used the random forest method to train the SMAP SM product with AMSR-E/AMSR2150

brightness temperature from five channels (H and V polarization of 10.7 GHz and 18.7 GHz, V polarization151

of 36.5 GHz) as well as auxiliary data (DEM, land cover, latitude, longitude, and day of the year) over the152

QTP, and rebuilt a Random Forest Soil Moisture (RFSM) product from 2002 to 2015 preserving the traits153

of SMAP well (R=0.95, RMSE=0.03 m3/m3) with high accuracy (R=0.75, RMSE=0.06 m3/m3, bias=-0.03154

m3/m3) as compared to in situ measurements. Here, this reconstructed SM product (RFSM) from machine155

learning method was used for downscaling. The spatial resolution of RFSM is 0.25° according to the156

brightness temperature products from AMSR-E/AMSR2. As an example, the RFSM data of 2014 was used157

in this study to conduct the downscaling methods comparison to identify adequate methods for further158

generation of long-term high-resolution SM over the QTP.159

To overcome the problem of the spatial/temporal discontinuity of the thermal infrared based land160
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surface temperature (LST) products over the QTP, a merged LST product (Zhang et al., 2019) from thermal161

infrared and microwave observations were used in this study. Space-borne thermal infrared (TIR) LST162

retrievals provide high spatial resolutions but suffer from cloud contaminations. By contrast, passive163

microwave (MW) LST products have all-weather capabilities but with a lower spatial resolution. To fill this164

gap, Zhang et al. (2019) integrated TIR and MW LST based on a temporal component decomposition165

method. The method decomposes LST into the components of annual temperature cycle (ATC), diurnal166

temperature cycle (DTC) prescribed by solar geometry, and weather temperature (WTC) driven by weather167

changes. The ATC is retrieved from clear-sky TIR LST and cloud-covered MW LST, respectively, and then168

combined by a temporal weighting method. The DTC is calculated from model-based LST product169

(CLDAS and GLDAS) by non-linear fitting, and the WTC is determined from subtracting ATC and DTC170

from the downscaled MW LST and then optimized by using a sliding window convolution strategy. The171

accuracy of this integrated TIR-MW LST product is 1.29–1.71 K, the spatial resolution is 1 km. In this172

study, the 1-km all-weather LST for the year 2014 was used and resampled to a resolution of 0.01° using a173

nearest neighbor resampling method.174

2.2.2. Auxiliary Satellite Data175

In order to feed the downscaling procedures, a range of auxiliary satellite data sets are required. The176

Global Land Surface Satellite (GLASS) is a high-precision, spatially continuous and long-term global177

product based on multi-source satellite sensors and ground-based measured data. Variables include leaf area178

index (LAI), surface broadband albedo (Albedo), fractional vegetation cover (FVC), gross primary179

production (GPP), evapotranspiration (ET), and broadband emissivity (BBE), etc. The GLASS products180

selected in this study are FVC (Jia et al., 2015), LAI (Xiao et al., 2014, 2016) and Albedo (Liu et al., 2013a,181

http://glass-product.bnu.edu.cn/introduction/abd.html
http://glass-product.bnu.edu.cn/introduction/ET.html
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2013b; Qu et al., 2014). The spatial resolution of the FVC product is 0.5 km, the spatial resolution of the182

LAI and Albedo product is 1 km, all these three products come with a sinusoidal projection and an 8-days183

temporal resolution. The data of 2014 was used in this study and all data can be downloaded from GLASS184

website (http://www.glass.umd.edu/Download.html).185

Land cover data from Moderate-Resolution Imaging Spectro-radiometer (MODIS) was used in this186

study. The MCD12Q1 product includes six different classification schemes, we chose the International187

Geosphere-Biosphere Programme (IGBP) classification scheme with a spatial resolution of 0.5 km and a188

sinusoidal projection. The data of 2014 was used, and this product can be downloaded from the189

EARTHDATAwebsite (https://search.earthdata.nasa.gov/).190

Global 30 Arc-Second Elevation (GTOPO30) is a global digital elevation model (DEM) product191

developed by United States Geological Survey (USGS) with a resolution of 30-arc second (approximately 1192

km), and an absolute accuracy of ±30 m. This DEM product can be downloaded from USGS website193

(http://eros.usgs.gov/#/Find Data/Products and Data Available/gtopo30 info). The precipitation data used in194

this study originates from CN05.1 (Wu and Gao, 2013), which is an interpolated 0.25° product based on195

more than 2000 station observations over China.196

All auxiliary products such as GLASS (FVC, LAI and Albedo), MCD12Q1 and GTOPO30 were197

resampled to a longitude/latitude projection with a resolution of 0.01° using a nearest neighbor resampling198

method, to match the projection of microwave-based SM product whose resolution is 0.25°.199

2.2.3. In Situ Soil Moisture Measurements200

The in situ measurements used in this study were selected from four networks, namely the upper reach201

of Heihe River Basin (uHRB) (Li et al., 2013; Liu et al., 2018b), Naqu (Yang, 2013), Maqu and Ngari (Su202

http://glass-product.bnu.edu.cn/.
https://doi.org/10.5067/MODIS/MCD12Q1.006.
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et al., 2011). Table 1 lists basic information about these four networks, more details can be found in Fig. 1203

and the literature listed above. In this study, we assumed homogeneity of these 74 sites and that a single site204

value is representative for the mean value of a 0.01° pixel.205

Standard deviations were calculated based on DEM to represent the heterogeneity of these four206

networks. Results show uHRB and Ngari (347.6 m and 380.9 m) have higher heterogeneity than Maqu and207

Naqu (151.6 m and 169.9 m).208

Table 1. Information of 4 soil moisture in situ measurement networks.209

Networks uHRB Maqu Naqu Ngari
Latitude 37.75°-38.5°N 33.5°-34.25°N 31°-32°N 79.75°-80.25°N
Longitude 100°-101.25°E 101.75°-102.75°E 91.6°-92.5°E 79.5°-79.75°E

Sampling interval 5 mins 15 mins 30 mins 15 mins
Depth used 4 cm 5 cm 5 cm 5 cm
Sites used 28 7 29 10
Time Period 04/2014-09/2014 04/2014-09/2014 04/2014-09/2014 04/2014-09/2014

3. Methodology210

3.1. Spatial Soil Moisture Downscaling Predictor211

SM downscaling predictors used in this study include LST, FVC, LAI, Albedo, soil evaporation212

efficiency (SEE), latitude, longitude and day or the year (DOY) from five aspects denoting energy,213

vegetation, dry/wet condition, geographic location and time information, respectively.214

The SEE is defined as the actual to potential soil evaporation, can be retrieved from LST and FVC215

based on the method from Merlin et al. (2012). The calculation formula of SEE is as follow:216

�姈姈 
��ulim � ��

��ulim � ��ul݉�
（1）

where ��ulim and ��ul݉� are the maximum and minimum value of the soil surface temperature over the217

study area, and �� is the soil surface temperature at a given pixel, described as follow:218
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�� 
�� �� � ��
� � ��

（2）

where � is the LST, �� is FVC, and �� is the vegetation temperature which can be calculated using the219

approach proposed by Moran et al. (1994). It should be noted that a correction for the elevation effects on �220

has been conducted based on the method proposed by Merlin et al. (2013):221

�  ��ཉ݉ � � � ��� H��� （3）

where ��ཉ݉ is the original LST at a given pixel, � is the mean lapse rate which is set to 0.006 ℃/m, � and222

��� are the altitude of a pixel (0.01°) and the mean altitude within the low resolution (0.25°) pixel,223

respectively.224

3.2. Soil Moisture Downscaling Methods225

Five downscaling methods were compared in this study, including a statistical regression based226

method, a physical model based method, two machine learning based methods, as well as a geostatistical227

based method.228

3.2.1. Multivariate Statistical Regression229

Multivariate statistical regression (MSR) refers to the establishment of a statistical relationship230

between SM and downscaling predictors under low resolution condition (microwave pixel scale), and then231

apply this statistical relationship to high resolution condition (target scale) by using high resolution232

downscaling predictors to obtain the downscaled SM at high resolution (Piles et al., 2016). The regression233

method used in this study is stepwise regression. The regression function can be described as follow:234

��  i� �
l�

�

il �� �l �
݉u��

�

i݉� �� �݉ � �� �݉ � �� （4）

where i� is a constant, il and i݉� are regression coefficients, � is the number of the downscaling235
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predictors used, �l, �݉ and �� are downscaling predictors.236

3.2.2. DisPATCh237

Disaggregation based on Physical And Theoretical scale Change (DisPATCh) is an updated version of238

the algorithms in Merlin et al. 2009, 2010, 2008. It aims at downscaling microwave SM from coarse to fine239

scale based on SEE given a semi-empirical model and a first order Taylor series expansion. The240

downscaling algorithm is shown as follow:241

����  ���� � ��⺁��姈姈��� � ��姈姈�� � �姈姈��� （5）

where ���� is the downscaled SM at high resolution, ���� is the microwave SM at low resolution,242

��⺁��姈姈��� is the partial derivative of SM relative to SEE estimated at low resolution, �姈姈�� and243

�姈姈�� are SEE at high and low resolution respectively. The ��⺁��姈姈��� can be calculated from daily SM244

and SEE observations. The function is described as follows (Malbéteau et al., 2016):245

��⺁��姈姈��� 
��
�姈姈

（6）

Note that both EQ. (5) and EQ. (6) are linear functions, which ensures that the mean value of the246

downscaled SM at a microwave pixel is equal to the original microwave SM value.247

3.2.3. Random Forest248

The random forest (RF) approach as proposed by Breiman (2001) essentially belongs to a large branch249

of machine learning methods that uses ensembles. The basic idea is to integrate the results of different250

decision trees through ensemble learning.251

The "random" denotes the randomization of data (rows) and variables (columns). First, row sampling252

is performed with a replacement sampling method. This makes sure the input samples of each tree are not253

the whole samples, which makes it relatively less prone to over-fitting. Then column sampling is performed254
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by randomly selecting a number of features m from the population M (m < M), and then select the best255

feature of m to completely split the samples. The "forest" denotes to the multiple independent decision trees.256

For an input sample, N trees will provide N decision results, and the RF will vote on all decision results,257

specifying the result with the most votes or choosing their average as the final output.258

This method has many advantages without significantly increasing the processing time, i.e., it is259

insensitive to multivariate colinearity and default values, and has a certain anti-noise ability, and can handle260

high dimensional data (Ahmad et al., 2017).261

3.2.4. Gaussian Process Regression262

Gaussian process regression (GPR) is a non-parametric machine learning method that uses Gaussian263

Process (GP) prior distributions to perform the regression analysis. It is widely used in the fields of time264

series analysis, image processing and automation control (Hu and Wang, 2015; Li et al., 2015; Mihoub et265

al., 2016). It requires fewer parameters to be set than artificial neural networks, usually used for low266

dimensional and small sample regression problems where high accuracies are required.267

The core theory of this algorithm uses the GP, which is a collection of multiple Gaussian distribution268

functions used to describe the distribution of data. Its nature is mainly described by the mean and269

covariance functions. Main assumption is that the prior distribution of variable � satisfies the following270

conditions:271

�짰���u��mum�� （7）

where � and ��mum� are the mean and covariance of � , respectively. The prior of joint probability272

distribution between observation variable � and predicted variable �� can be described as:273

�
�� 짰�

�
�� u

��mum� ��mum��
��m�um� ��m�um�� （8）
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where � and �� are mean value of � and �� , m� is new input variable samples, ��m�,m�=��m,m�� is274

covariance between m and m� , ��m,m� is covariance of m samples. GPR is able to use different kernel275

functions to represent the covariance during the training process, in this study, the square-exponential276

covariance kernel function was used.277

After getting the prior distribution of � , and the joint probability distribution from EQ. (8), the278

posterior probability can be calculated based on Bayes´ formula. Therefore, the final estimation of ��m�� is279

performed by:280

� ��m�� ��m� 
����m�u��m���

����m��
（9）

where ����m�� is the prior distribution of � , ���u��m��� is the joint probability distribution, and281

� ��m�� ��m� is the posterior probability.282

3.2.5. Area-to-Area Regression Kriging283

The area-to-area regression Kriging (ATARK) (Jin et al., 2018b) downscaling process can be divided284

into two main parts: i) building the trend surface by MSR (EQ. (4)) and getting the residuals by removing285

trend surface from original microwave SM, and ii) performing area-to-area Kriging interpolation to the286

residuals and then add these fine resolution residuals to trend surface to finish the downscaling process. By287

this method, the residuals after regression can meet the second-order stationary condition and, therefore,288

modify the built trend surface.289

After building the trend surface from MSR, the low-resolution regression residuals are constructed by290

subtracting the trend surface from the microwave SM values. Then the high-resolution residuals can be291

obtained from the nearby low-resolution residuals by:292

ཉ� �� 
��

�

��� � ཉ����� （10）
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where ཉ� �� is the residual to be estimated at a given fine scale pixel �� , ཉ���� is the neighboring293

residuals at coarse scale pixels, � is the number of the chosen neighboring coarse scale pixels, and ��� is294

the weight coefficient that can be calculated as follows:295

݉�

�

�݉� � � ��u�݉ � � ��  � ��u�� u � �  �u�u�u��

݉�

�

�݉�  ��

（11）

where � ��u�݉ and � ��u�� are area-to-area covariance, ����� is the Lagrange multiplier.296

Finally, the resulting high-resolution residuals are added to the trend surface to obtain the downscaled297

SM.298

3.3. Downscaling and Methods Comparison Procedure299

Fig. 2 shows the downscaling procedure and comparison of the downscaling methods. Before the300

downscaling process, all the eight downscaling predictors were resampled to the resolution of 0.01° using a301

nearest neighbor resampling method. SEE, the downscaling predictor of DisPATCh is calculated from LST302

and FVC. The downscaling predictors of MSR and ATARK are LST, FVC, LAI, Albedo, SEE, longitude303

and latitude. As the models established by RF and GPR are with stronger simulation ability, apart from the304

downscaling predictors used in MSR and ATARK, the observation day of year (DOY) is added to ensure305

the stability of the downscaling relationship. It should be noted that the downscaling predictors used in306

MSR, ATARK, RF and GPR need to be normalized, and a denormalization process is performed after the307

high-resolution SM simulation to get the real downscaled SM.308
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309

Fig.2. Flowchart of the soil moisture downscaling procedure and methods comparison.310

311

After the downscaling procedure, the comparison was conducted based on four aspects, that is: (1)312

comparison with original microwave SM product, in this case is RFSM; (2) comparison of the downscaled313

SM with in situ observations based on single site and spatial correlation; (3) inter-comparison based on the314

three-cornered hat (TCH) method and statistical metrics; and (4) comparison of the spatial feasibility on the315

whole QTP and a specific area based on spatial patterns and details.316

3.4. Statistical Metrics317

The standard statistical metrics used in this study include correlation coefficient (R), root mean square318

error (RMSE), unbiased RMSE (ubRMSE), and bias, given by:319

�  ݉�
� m݉ � m� �݉ � ���

（12）

���姈  ݉�
� m݉ � �݉ ��

�
（13）

�����姈  ݉��
� �m݉ � m�� � �݉ � �� ��

�
（14）
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�݉i� 
�
�

݉�

�

m݉ � �݉� （15）

where m� and �� are mean value, m݉ is the estimated value, �݉ is the observed value, and N is the size of320

sample.321

However, it is difficult to make a comprehensive quantitative comparison about the advantages and322

disadvantages of the downscaling method based on the verification results from a single evaluation metric.323

Therefore, this study used the ���e� indicator (Merlin et al., 2015) to comprehensively evaluate the324

downscaling results from three aspects, that is efficiency gain (����݉), precision gain (��ཉ��), and accuracy325

gain (�i���), given by:326

���e�  �����݉ � ��ཉ�� � �i����th （16）

����݉ 
� � �t����� � � � �t�����
� � �t����� � � � �t�����

（17）

��ཉ�� 
� � ��� � � � ���
� � ��� � � � ���

（18）

�i��� 
�݉i��� � �݉i���
�݉i��� � �݉i���

（19）

where, the subscript “ �� ” and “�� ” indicate the statistical metrics on the microwave pixel scale and327

high-resolution scale respectively, and �t��� is the slope of microwave/downscaled SM against in situ data.328

3.5. Three-Cornered Hat Method329

As the quantity of in situ data is limited, a thorough performance analysis of downscaling methods330

within the whole QTP is a challenge. While the three-cornered hat (TCH) method (Tavella and Premoli,331

1994) can estimate relative uncertainties among several products without prior information, independence332

between the tested products is not necessary if properly constrained. A time series can be split into true333

value and error by:334

�݉  ��ཉ�� � �݉u �݉  �u�u�u� （20）
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where �݉ is the ݉�� product time series, ��ཉ�� is the true value, �݉ is the error term and � is the total335

number of the product. The differences between the �� � tested products �݉ and a randomly selected336

reference product �ཉ are described as:337

�݉uཉ  �݉ � �ཉ  �݉ � �ཉu �݉  �u�u�u� � � （21）

where � is a matrix with �� � time series. If the covariance matrix of � is �  ������ , the � � �338

unknown covariance matrix of the individual noises � can be described as:339

�  � � � � �� （22）

where �  h� � ��, � is a ��� �� � ��� �� identity matrix, � is a ��� �� unit column vector.340

To solve EQ. (22), Galindo and Palacio (1999) introduced a constrained minimization function based341

on Kuhn-Tucker theory, the objective function � can be obtained by:342

� ���u�u��� 
�
��

�
݉�

�

��

�

�݉�
��� u ݉ ᷩ � （23）

where �  ��� S , �݉� is the elements of �. The constraint function � and the initial iteration conditions343

set as:344

� ���u�u��� �
�

� � �
ᷩ � （24）

�݉�
�  �u ݉ ᷩ �⍐ ���

� 
�

� � �� u
��  �� � ��� � � （25）

After obtaining the matrix � by minimizing EQ. (23), the square root of the diagonal values of �345

denotes the uncertainty of each product. The ratio of the uncertainty to the mean value of each product can346

be considered as relative uncertainty.347
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4. Results348

4.1. Comparison of the Downscaled with Original Soil Moisture349

To test the performance of the downscaling methods on preserving the traits of the original microwave350

SM product, the downscaling results at a resolution of 0.01° were averaged to 0.25°, then the statistical351

metrics (R, ubRMSE and bias) were calculated spatially, the results are shown in Fig. 3 and Fig. 4.352

Fig. 3 shows that MSR, RF and GPR have worse performance on the northwest of the QTP, where the353

land cover is mainly barren or sparsely vegetated, according to the R value. ATARK has better performance354

over these areas originating from the residual correction process, but has worse performance at the border355

as well as south central of the QTP caused by the extensive topography. DisPATCh performs best among356

the five downscaling methods and the downscaling result is highly correlated with the original SM product357

over the whole QTP.358

359
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360

Fig.3. Spatial distribution of the comparison results (R, ubRMSE, bias) between the original microwave361

product (RFSM) and the downscaling results.362

363

As shown in the second column of Fig. 3, according to the ubRMSE value, RF and GPR show similar364

spatial distribution, both of them have lower ubRMSE over the whole QTP. Both two statistical regression365

methods (MSR and ATARK) also have similar spatial distribution with higher ubRMSE than RF and GPR,366

but ATARK has smoother spatial pattern than MSR. Again, DisPATCh has the lowest ubRMSE value over367

the whole QTP, also performs the best among the five methods.368

The third column of Fig. 3 shows the spatial distribution of the bias. Results indicate that the bias of369

DisPATCh is almost zero over the whole QTP, meaning the DisPATCh is the only unbiased downscaling370

method in this study. GPR has better performance than RF, especially on the south and southwest of QTP.371
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The bias distribution of MSR and ATARK is opposite, and around water bodies MSR tends to372

underestimate and ATARK tends to overestimate.373

374

Fig.4. Violin plots (the black bar shows the third quartile, median and first quartile from top to bottom) of375

the value distribution of statistic metrics (R, ubRMSE, bias) between the original microwave product376

(RFSM) and the downscaling results.377

378

Fig. 4 shows the value domain of these statistical metrics over the whole QTP. According to the R379

value, DisPATCh performs the best followed by ATARK, GPR, RF and MSR. From the ubRMSE,380

DisPATCh also performs the best followed by GPR, RF, MSR and ATARK. From the bias, DisPATCh381

almost has zero bias value followed by GPR, RF, MSR and ATARK, which is consistent with the results of382

ubRMSE.383

4.2. Comparison of Downscaled and In Situ Soil Moisture384

To evaluate the performance of the downscaling methods, the downscaling results were compared with385
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the in situ SM data at the 0.01° scale at four stations (totally 74 sites) during the unfrozen season (from386

April 1st to September 30th). In addition, the validation of the RFSM against in situ SM observations is387

performed at the 0.25° scale at all 74 sites. The verification results are shown in Appendix. 1 and Appendix.388

2, where R, RMSE, ubRMSE, bias and ��th� are calculated separately.389

Fig. 5 and Table 2 show the violin plots as well as the mean value of the of the validation results over390

the all 74 sites. The distribution of the correlation coefficient of ATARK is most similar to RFSM, with391

very close mean value, first and third quartile, and median (0.555 m3/m3 to 0.546 m3/m3) which means the392

ATARK method can capture the temporal variation of the RFSM well, followed by DisPATCh, RF, GPR393

and MSR (0.479 m3/m3, 0.472 m3/m3, 0.469 m3/m3 and 0.445 m3/m3, respectively).394

395

Fig.5. Violin plots (the black bar shows the third quartile, median and first quartile from top to bottom) of396

the value distribution of statistic results (R, RMSE, ubRMSE, bias) between the downscaling results and in397

situ soil moisture measurements.398

399

For the RMSE value, the distribution patterns of DisPATCh, RF and GPR are more similar to RFSM400
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with most of the RMSE located near 0.1 m3/m3, while as shown in Table 2, DisPATCh and RF has lower401

mean value than GPR (0.118 m3/m3, 0.117 m3/m3 and 0.121 m3/m3 respectively), followed by ATARK and402

MSR (0.129 m3/m3 and 0.137 m3/m3). Meanwhile the MSR has a wider value range, which means it has403

lower stability over different sites according to RMSE. Note that all these five downscaling results lead to404

an increase of the RMSE compared to RFSM whose mean value is 0.112 m3/m3.405

Based on ubRMSE, MSR performs best (0.051 m3/m3), followed by RF, GPR, DisPATCh and ATARK406

(0.058 m3/m3, 0.063 m3/m3, 0.068 m3/m3, 0.086 m3/m3 respectively). Based on the bias evaluation, the407

ranking is ATARK, DisPATCh, RF, GPR and MSR (-0.014 m3/m3, -0.069 m3/m3, -0.081 m3/m3, -0.083408

m3/m3 and -0.119 m3/m3 respectively). As an unbiased downscaling method, DisPATCh has the closest bias409

value with its origin RFSM. MSR usually has a narrow violin indicating that this method is unstable when410

applied to different areas.411

Note that these conclusions do not directly support the comparison results between the RFSM and412

downscaled SM as shown in Fig. 3 and Fig. 4, meaning that to some extent the ability of transferring the413

accuracy of the original microwave SM product could be a disadvantage for improving the accuracy of the414

downscaling results. For example, the MSR although has worse performance regarding ubRMSE when415

compared with RFSM, it has the best performance when compared with in situ observed SM, and416

DisPATCh performs better than ATARK on R when compared with RFSM, while ATARK has the highest R417

value when compared with in situ observed SM, even better than RFSM.418

When comparing at different networks, MSR has worse R performance at uHRB, Maqu and Ngari,419

while at Naqu where the land cover is homogeneous grassland as shown in Fig. 1, MSR shows highest R. It420

also shows low ubRMSE and high bias at all four networks. ARARK has highest R at all four networks421

indicating the residual processing strategy is useful for capturing a higher portion of SM temporal changes422
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information, but usually introduce larger bias and fluctuation. RF and GPR have lower RMSE and423

ubRMSE at Naqu, but RF performs better than GPR at all four networks based on RMSE and ubRMSE as424

well as lowest RMSE at Naqu and Ngari.425

426

Table 2. The mean value of the statistical results of the downscaled soil moisture against in situ427

measurements. The greener the color scheme, the better the statistical result. The color scheme is separately428

used to facilitate the comparison in each network.429

In situ

networks
Methods

Unfrozen season mean value In situ

networks
Methods

Unfrozen season mean value

R RMSE ubRMSE bias + Gdown R RMSE ubRMSE bias + Gdown

uHRB

(28 sites)

MSR 0.327 0.182 0.070 -0.159 25.0%

Maqu

(7 sites)

MSR 0.249 0.144 0.076 -0.120 0.0%

DisPATCh 0.390 0.150 0.070 -0.114 32.1% DisPATCh 0.430 0.090 0.078 -0.032 28.6%

RF 0.298 0.164 0.073 -0.127 28.6% RF 0.323 0.094 0.079 -0.040 14.3%

GPR 0.324 0.165 0.076 -0.126 35.7% GPR 0.448 0.098 0.080 -0.038 42.9%

ATARK 0.424 0.134 0.071 -0.073 50.0% ATARK 0.469 0.129 0.091 0.088 28.6%

RFSM 0.460 0.148 0.067 -0.114 - RFSM 0.494 0.089 0.073 -0.035 -

Naqu

(29 sites)

MSR 0.754 0.124 0.039 -0.111 37.9%

Ngari

(10 sites)

MSR 0.013 0.046 0.014 -0.027 30.0%

DisPATCh 0.659 0.113 0.080 -0.041 34.5% DisPATCh 0.243 0.060 0.018 -0.053 30.0%

RF 0.712 0.103 0.055 -0.064 58.6% RF 0.371 0.045 0.012 -0.030 50.0%

GPR 0.705 0.105 0.061 -0.063 58.6% GPR 0.206 0.061 0.020 -0.054 20.0%

ATARK 0.715 0.145 0.121 0.035 41.4% ATARK 0.522 0.071 0.022 -0.063 50.0%

RFSM 0.725 0.104 0.068 -0.045 - RFSM 0.307 0.051 0.016 -0.042 -

All

(74 sites)

MSR 0.445 0.137 0.051 -0.119 28.4%

DisPATCh 0.479 0.118 0.068 -0.069 32.4%

RF 0.472 0.117 0.058 -0.081 41.9%

GPR 0.469 0.121 0.063 -0.083 43.2%

ATARK 0.555 0.129 0.086 -0.014 44.6%

RFSM 0.546 0.112 0.061 -0.070 -

430

According to ��th� shown in Table. 2, from the view of all four networks, there are only 28.4%,431

32.4%, 41.9%, 43.2% and 44.6% of the sites with positive ��th� values for MSR, DisPATCh, RF, GPR432

and ATARK, respectively. This implies a negative effect of the downscaling process to the SM accuracy.433

This phenomenon is more obvious over heterogeneous land surface like uHRB and Maqu. At Naqu,434
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however, RF and GPR show more than 50 percent of positive ��th� u MSR, DisPATCh and ATARK also435

show higher proportion of positive values indicating that downscaling over homogeneous land surface436

could be more likely to keep the accuracy of RFSM or even improve the accuracy.437

438

Fig.6. Spatial correlation (Rspatial) of original microwave product (RFSM) and the downscaled results with439

all 74 in situ sites over unfrozen season of 2014, as well as the average value of corresponding RFSM and440

precipitation.441

442

To further test the temporal stability of the downscaling methods, the temporal course of the spatial443

correlation Rspatial is plotted in Fig. 6. The results show that Rspatial of RFSM changes dramatically during the444

seasons with precipitation. In April, when the QTP soils not evenly unfreeze and ponding water might445

cover the soil, the spatial surface SM cannot be captured adequately. Then Rspatial increases until summer446

and the spatial patterns are adequately represented. Later in summer and autumn, SM variability decreases447
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with the increase of SM thus resulting in the decline of Rspatial. The large noise of Rspatial could be resulted448

from the possibility that topography variations, land cover changes and precipitation cannot be detected in a449

0.25° microwave pixel but could be detected by some in situ sites. While this seasonal trend is more450

obvious in the SM downscaling results. When the whole QTP is dry or wet, the low SM variability leads to451

lower spatial correlations between downscaled SM and in situ stations. The spatial correlation is highest452

during moderate SM conditions with highest SM variability (Zhao et al., 2013). An extensive precipitation453

event in summer and autumn reduces the spatial correlation Rspatial.454

4.3. Inter-Comparison of Downscaling results455

Considering that the direct comparison is limited by the quality and quantity of the in situ SM456

measurement, it is difficult to indicate the overall performance of the downscaling methods over the entire457

QTP. Therefore, the three-cornered hat (TCH) method was used in this study to compare the spatial458

distribution of the uncertainty between the five downscaling methods. In addition, an inter-comparison459

between the downscaling results is also performed by calculating R and RMSE between each two methods,460

the results are shown in Fig. 7 and Fig. 8.461

It can be seen from Fig. 7 that the high uncertainty of DisPATCh is mainly concentrated on the462

boundary of microwave pixels with strong SM variability and around high SM areas. In addition, high463

uncertainty also appears close to water bodies where higher SM values appear as well as forest land cover464

in the southern part of the QTP. Both RF and GPR have high uncertainty in the Eastern part and around the465

Qinghai Lake in the Northeast of the QTP. GPR has higher uncertainty than RF in the forested southern part466

of the QTP. MSR and ATARK, both based on statistical regression, have similar uncertainty spatial467

distribution. Both results show higher uncertainty over high SM area around water bodies and wetlands in468
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the Eastern part and hinterland of the QTP. Generally, ATARK exhibits higher uncertainty than MSR469

especially on the Northeastern QTP and the grassland in the central part as well as forest in the South of the470

QTP. Fig. 7 also shows the spatial distribution of the downscaling results with minimum uncertainty, where471

GPR performs best in 33.2% of the QTP area, followed by RF 29.5%, DisPATCh 28.4%, MSR 8.1% and472

ATARK 0.8%.473

474

Fig.7. The three-cornered hat (TCH) comparison results between the five downscaled soil moisture and the475

spatial pattern where each downscaling method has minimum uncertainty among the five methods.476

477

Fig. 8 presents the inter-comparison between each two methods. Results show that DisPATCh, RF and478

GPR have high correlation, with higher R values (from 0.81 to 0.85) and lower RMSE values (lower than479

0.04 m3/m3); MSR performs worse with R lower than 0.8 (0.66, 0.73 and 0.51) and RMSE higher than 0.04480

m3/m3 (0.049 m3/m3, 0.042 m3/m3, 0.081 m3/m3) against DisPATCh, GPR and ATARK; while although has481
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similar R values as MSR, ATARK performs worst with the highest RMSE (higher than 0.05 m3/m3) as482

compared to other methods.483

484

Fig.8. Inter-comparison between each two methods based on R and RMSE, as a supplement to the485

three-cornered hat (TCH) comparison results.486

487

Note that the correlation between MSR and ATARK is the lowest even though they all based on488

polynomial-fitting and used the same downscaling predictors. The reason could be attributed to the residual489

interpolation process of ATARK. Compared to RF and GPR, although DisPATCh is downscaled from SEE,490

while RF and GPR are downscaled from LST, FVC, LAI, Albedo, SEE, longitude/latitude and DOY, they491

still have high correlation. This might be caused by the fact that DisPATCh have high ability on preserving492

the accuracy and spatial pattern of RFSM and machine learning methods have strong simulation ability.493

Another reason could be attributed to the high representativeness of LST to SM (Long et al., 2019), but this494

should be considered carefully. As the ability of MSR to capture the high dynamics of SM over the QTP is495

limited by its linear model, this fitting performance difference would induce the weaker correlation496

between MSR and RF/GPR. ATARK exhibits a higher bias than other methods when compared with RFSM497

(Fig. 3), therefore, in this inter-comparison it performs worst.498
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This phenomenon is similar to the direct comparison results against in situ data in Table 2, where499

DisPATCh, RF and GPR have similar performance and MSR performs worst while ATARK performs best500

regarding R and bias. This is also consistent with the results shown in Fig. 7 based on TCH method, that is,501

DisPATCh, RF and GPR have similar uncertainty, MSR has high uncertainty in some specific areas, and502

ATARK has the highest uncertainty over most area of the QTP.503

4.4. Spatial Feasibility of the Downscaled Soil Moisture504

In order to analyze the feasibility of the spatial distribution of the downscaling results, Fig. 9 and Fig.505

10 compare the downscaling results with RFSM over the whole QTP and a specific area on the unfrozen506

season.507

As shown in Fig. 9, all five methods can capture the temporal changes of RFSM, and DisPATCh, GPR508

as well as RF are consistently better capturing the spatial patterns of RFSM over the whole QTP.509

Considering that DisPATCh is an unbiased downscaling method, its ability to restore the spatial pattern of510

the original microwave product is the strongest, but because of the pixel-by-pixel downscaling process,511

despite a sliding window method is used, the mosaic effect is still relatively serious as shown in Fig. 9.512

While RF, to a certain extent, has a stronger smoothing effect than DisPATCh on the spatial trend. Due to513

the downscaling predictors used in this study contain latitude/longitude information which are at a low514

resolution and the fact that RF cannot predict values out of range of training sets, therefore, the new515

inputted fine scale latitude/longitude information would probably lead the predicted SM to nearest pixels516

SM values in the training sets at a coarse scale and induces the mosaic effect of downscaling results. But517

this phenomenon mainly occurs in areas with strong SM gradients, so that there is basically no mosaic518

phenomenon in areas with stable SM.519
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520

Fig.9. The spatial distribution of RFSM and five downscaling results over the unfrozen season of 2014.521

522
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Compared with RF, the spatial distribution of GPR is less affected by mosaic effect in some SM523

variable areas and is not as smooth as RF in SM stable areas, but on the whole there is a high degree of524

consistency with RF. MSR has a good response in the forest area only in the Southeastern QTP. But in other525

regions of QTP, its downscaling results lose the spatial details of SM, that is, the spatial distribution is too526

smooth, especially in areas with large gradients of SM. In contrast, ATARK underestimates SM in dry areas527

and overestimates SM in wet areas, which strengthens the spatial comparison of SM and highlights the SM528

spatial characteristics of QTP. This is because during the residual interpolation process, the residual of the529

high-resolution target pixels is affected by the surrounding high absolute value residuals, thus530

overestimating the residuals, and after these overestimated residuals are added to the regression trend531

surface, the overcorrecting phenomenon appears.532

533

Fig.10. The spatial distribution of RFSM and five downscaling results within a specific area534

(29.25°-31.75°N, 96.25°-98.75°E) on July 1, 2014.535

536
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Fig. 10 shows spatial details of the downscaling results over a specific area. All results except MSR537

can keep the spatial pattern of RFSM well. While in the southwestern river valley, DisPATCh shows lower538

SM which indicates the possibly wrong SEE spatial pattern in this area, and that one downscaling predictor539

alone is not sufficient to represent spatial pattern and details on complex land surface. ATARK performs540

better by both providing spatial pattern from RFSM and spatial details from downscaling predictors than541

DisPATCh. MSR although can provide spatial details around the river valley, it weakens the spatial pattern542

of RFSM. Comparing with RF whose spatial pattern is smooth, GPR can provide more spatial details both543

in southwestern low SM areas and northeastern high SM areas.544

5. Discussion545

5.1. Downscaling Algorithms and Scale Effects546

Based on the performance of the five downscaling results on preserving the traits of the original547

microwave product in Section 4.1, the reasonable order of performance is DisPATCh, GPR, RF, ATARK548

and MSR. This result is related to the scale effect introduced from their downscaling algorithm.549

Scaling of environmental states and processes is a key issue in remote sensing research, and scale550

effects need to be considered in remote sensing analyses. The scale effects in this downscaling process551

mainly originate from two topics: (1) when the downscaling predictors were aggregated to low resolution,552

the scale effect caused by the nonlinearity on the retrieval process of the downscaling predictors. This kind553

of scale effect exists in all five downscaling methods, so that we decide to omit a thorough analysis. (2) The554

scale effect of the model, that is, whether the downscaling model established on one scale is applicable to555

another scale. This kind of scale effect is related to the linear or nonlinear degree of the downscaling model.556

I.e., if the model is linear, there is no scale effect, and if the model is nonlinear and the same model is557



34 / 57

applied at different scale, the results will be different, and the extent of differences is related to the558

heterogeneity of the underlying surface and the degree of nonlinearity of the model.559

Among the five downscaling algorithms, only the DisPATCh is a linear model. There is no scale effect560

of the model, so there will be no differences when changing the order of processing steps, i.e., no difference561

between “averaged first and then inverted” (i.e., averaging the high-resolution downscaling predictors to562

low-resolution and then the low-resolution SM is inverted, which corresponds to the downscaling process563

of establishing the relationship between SM and downscaling predictors at low-resolution) and “inverted564

first and then averaged” (i.e., inverting the high-resolution SM from the high-resolution downscaling565

predictors and then the high-resolution SM is averaged to low-resolution, which corresponds to the566

validating process of averaging the downscaling results to low-resolution). The pixel by pixel downscaling567

combined with its linear model results in an unbiased downscaling method DisPATCh. Therefore, it568

performs best among the five downscaling methods by preserving the traits of the original microwave SM569

product as well as the smallest scale effect.570

The other four downscaling algorithms are nonlinear, so there is a significant scale effect during the571

model application. The models established by RF and GPR are discrete, combined with latitude and572

longitude information, they can respond well to high and low SM conditions. However, the models573

established by MSR and ATARK are continuous, which leads to the failure of the continuous model on574

obtaining reliable fitting results in areas with large SM variability, resulting in large deviation in the575

downscaling results especially around water bodies.576

While during the interpolation process of the residuals in ATARK, as mentioned in Section 4.4, the577

smoothing of the regression model leads to higher residuals, the residuals are still higher after interpolation.578

These high residuals as well as the spatially smoothing effect of the interpolation process lead to the579
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“overcorrection” of the MSR bias on the other land covers around water bodies, as shown in the bias spatial580

distribution results in Fig. 3.581

5.2. Deterioration Effects during Downscaling582

The results in Section 4.2 show all the five downscaling results have a decline of the accuracy than583

RFSM with a negative ���e� over more than 50% sites (MSR 71.6%, DisPATCh 67.6%, RF 58.1%, GPR584

56.8% and ATARK 55.4%), which is contrary to the results of Merlin et al. (2015) and Malbéteau et al.585

(2016). In order to investigate this phenomenon in more detail, the bar plots in Fig. 11 show the586

performance of ���e� and also its three components, namely ����݉, ��ཉ��, and �i���, from slope, R and587

bias differences before and after the downscaling.588

589

Fig.11. Bar plots of each downscaling method about the percentage of ���e� and its three components590

with negative value.591

592

First, for ���e� , MSR performs worst resulting from the bad performance of ����݉ and �i��� , with593

75.68% and 77.03% negative values, while it has a better ��ཉ�� indicating that MSR results have worse594
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slope and bias than RFSM over most sites but with a relative better R performance than other methods. For595

DisPATCh, the 67.57% negative ���e� may result from the bad performance of ��ཉ�� implying a decline596

of R when against RFSM. The two machine learning methods, RF and GPR have similar performance in597

��ཉ�� and �i��� as well as ���e� while GPR performs better in ����݉ with less negative values598

(41.89%). ATARK however has the best ���e� performance caused by its good performance of the all599

three component indices.600

This accuracy decline phenomenon during downscaling is similar to the direct comparison results601

against in situ data shown in Section 4. 2, where ATARK performs best, followed by DisPATCh, RF, GPR602

and MSR considering R and bias. But there are still differences, for example MSR has the worst R value603

(0.445) in Table 2 while it performs better in ��ཉ�� . Therefore, Fig. 12 was plotted to test the changes of604

����݉ , ��ཉ�� , and �i��� with the different combinations of high-resolution and low-resolution statistical605

matrix values.606

The results indicated that these indices are suitable for single site comparison but not suitable for a607

comprehensive comparison over several sites. Even the same ����݉ , ��ཉ�� , and �i��� values imply608

different magnitudes of increase or decline of the downscaling results performances as compared to609

different original microwave product performances. Thus, the sign of these indices is more meaningful than610

the absolute value itself when considering the validation results from different sites. Therefore the611

mismatch of the worst R performance and the best ��ཉ�� performance could be explained by this different612

potential meaning of the ��ཉ�� value, that is, some positive ��ཉ�� values may indicate a low increase of613

the R over a site while some negative values could indicate a huge decline of the R over other sites. In total,614

this ���e� index is useful when comparing the downscaling results with the original microwave SM615

product but should be used carefully when there is not a strong positive or negative trend over most sites.616
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617

Fig.12. Changes of ���e� and its three components with statistic results (slope, R and bias) of618

high-resolution downscaled soil moisture over different low-resolution RFSM conditions.619

620

But the question is still, why there is a negative effect of the downscaling process in this study? This621

could result from the spatial mismatch at the fine scale resolution which is expected to be larger (Sabaghy622

et al., 2020; Van der Velde et al., 2012) and also the fact that original microwave products often have higher623

correlation with the temporally dynamic changes of the observed SM while the downscaling results have a624

potential to provide more spatial details and perhaps reflect more patterns about the downscaling predictors625

(Gruber et al., 2020; Peng et al., 2016). Although the downscaling predictors could provide more626

information than the original microwave SM product itself, they could also introduce errors to the627

downscaling process.628
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5.3. The Impact of Land Cover629

Land cover as an important factor which can reflect and influence SM spatial distribution. It was630

analyzed here to further elaborate on the TCH results in Section 4.3. The variation of TCH uncertainties631

corresponding to land cover changes from latitude and longitude direction are shown in Fig. 13.632

633

Fig.13. Changes of three-cornered hat (TCH) uncertainty with land cover on Latitude and Longitude634

direction.635

636

MSR and ATARK usually have higher uncertainties than DisPATCh, RF and GPR both from latitude637

and longitude direction. Their uncertainties change with the percentage of vegetated land cover (the blue638

part in Fig. 13). While although the uncertainties of DisPATCh, RF and GPR increase too, their changes are639

gradual, which indicate that statistical regression based methods (MSR and ATARK) perform worse when640

the SM variability increases as the percentage of vegetated land cover increases. DisPATCh downscales SM641

in a window around the target pixel, so the performance is stable over the whole QTP except for highly642

vegetated areas (around 26.5° N). This results from the weaker correlation between SEE and SM there643
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(Malbéteau et al., 2016). Machine learning-based methods (RF and GPR) due to their model nonlinearity644

and flexibility can somehow capture the SM changes over high variability areas and therefore also preserve645

a relatively stable uncertainty.646

647

Fig.14. Violin plots (the black bar shows the third quartile, median and first quartile from top to bottom)648

about the three-cornered hat (TCH) uncertainty of each downscaling method over barren land, grassland649

and forest land cover.650

651

Fig.15. Circle charts about the percentage of each downscaling method with the lowest uncertainty among652

the five methods over barren land, grassland and forest land cover.653

654

The violin plots and circle charts in Fig. 14 and Fig. 15 show that for barren land and sparsely655

vegetated land cover, DisPATCh usually has the best performance followed by GPR, RF, MSR and ATARK.656
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The pie graph indicates that DisPATCh has the smallest uncertainty in 40.2% of this land cover, followed657

by GPR, RF, MSR and ATARK (38.3%, 16.9%, 4.2%, 0.4% respectively). Under grassland, RF has the658

minimum uncertainties, followed by DisPATCh, GPR, MSR and ATARK. RF and GPR have the minimum659

uncertainty in 35.2% and 33.5% areas of grassland, followed by DisPATCh, MSR and ATARK (22.8%,660

7.9%, 0.6% respectively). Under forest, RF also has the minimum uncertainty followed by DisPATCh, GPR,661

MSR and ATARK. RF has the minimum uncertainty in 43% area of the forest land cover, followed by662

DisPATCh, GPR, MSR and ATARK (26.9%, 15%, 11.3%, 3.8% respectively).663

5.4. Synopsis of Validation664

To perform a comprehensive comparison and to summarize the characteristics of each downscaling665

method, a ranked radar chart is plotted in Fig. 16. Among the five downscaling methods, DisPATCh as an666

unbiased method caused by its linear downscaling model and pixel-by-pixel downscaling strategy, has the667

best performance on preserving the spatial distribution pattern and accuracy of RFSM, followed by GPR668

and RF, while MSR and ATARK perform the worst resulting from the limited fitting ability of linear669

statistical regression model and the overcorrection phenomenon of the residual interpolation process in670

ATARK.671
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672

Fig.16. Radar chart about the ranked performance of each downscaling method when compared with673

original microwave product, in situ measurements and according to ���e� , inter-comparison performance674

and spatial details. The higher the value, the better the performance.675

676

When compared with in situ measurements, ATARK however performs best with the highest677

correlation even better than RFSM (0.555 to 0.546), followed by RF, DisPATCh, GPR and MSR, which678

indicates the positive effects of the residual processing strategy in ATARK and the fact that high679

consistency with original microwave SM product to some extent could be a disadvantage for improving the680

accuracy of the downscaling results.681

When considering the ���e� metric, the downscaling process has a negative effect at most sites,682

about 71.6%, 67.6%, 58.1%, 56.8% and 55.4% for MSR, DisPATCh, RF, GPR and ATARK, respectively.683

This negative effect of downscaling could be explained by the spatial mismatch and the trend that684

downscaling results usually represent the spatial distribution of the downscaling predictors, not the685



42 / 57

temporal changes of SM from the original microwave product. Besides, this negative effect tends to be686

higher over heterogeneous land surface.687

Based on inter-comparison results, RF and GPR performs better with lower uncertainty spatially and688

RF is better than GPR over grassland and forest land cover. DisPATCh has medium uncertainty and689

performs best over barren land or sparsely vegetated land cover as the correlation of SEE and SM is690

stronger over arid areas. MSR and ATARK have high uncertainty spatially and ATARK performs worst691

with high uncertainty resulted from the large deviation against other methods.692

Considering the spatial feasibility, although showing highest SM variation spatially caused by the693

overcorrection phenomenon of the residual interpolation process, ATARK can keep the spatial pattern of694

RFSM well and can provide more spatial details. DisPATCh performs best with most similar spatial pattern695

as original microwave SM product, while suffers from mosaic effects and can provide wrong SM pattern696

over complex land surface due to that SEE alone is not sufficient to represent SM spatial patterns. GPR697

performs better than RF both in spatial patterns and details. MSR shows smoothest spatial pattern thus698

misses spatial details to a large degree.699

6. Summary and Conclusions700

In this study, SM downscaling was performed over QTP by five methods, namely MSR, DisPATCh,701

RF, GPR and ATARK, to increase the spatial resolution of the original RFSM product from 0.25° to 0.01°.702

The downscaling results were analyzed regarding four aspects, that is, comparison with the original703

microwave SM product, comparison with in situ measurements, inter-comparison between each other, and704

spatial feasibility analysis.705

Due to the linear model and pixel-by-pixel downscaling strategy, DisPATCh is an unbiased706
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downscaling method with the highest ability of preserving the traits of microwave SM product. While to707

some extent, this ability could be a disadvantage for improving the accuracy of the downscaling results.708

Meanwhile, SEE alone is not sufficient to represent SM variations over complex land surface.709

Machine learning methods, RF and GPR, perform stable in all four comparison results due to their710

high ability to capture nonlinear processes but provide a smoother spatial pattern. RF has lowest711

uncertainty over grassland and forest land cover while performs worse than GPR over barren land and712

sparsely vegetated land cover where DisPATCh performs best caused by the stronger correlation of SEE713

and SM over arid areas.714

The linear regression model of MSR is not suitable for downscaling on complex land surface,715

resulting in the low accuracy of downscaling results and missing of spatial details, while over716

homogeneous land surface, its downscaling results could capture SM temporal variation well. ATARK has717

the highest uncertainty and large SM variation over most area of QTP caused by the overcorrection718

phenomenon of its residual interpolation process. However, it can also slightly improve the correlation (R)719

of the downscaling results and correct the bias when compared against in situ measurements as well as720

provide more feasible spatial patterns and details.721

The availability of ���e� in downscaling results comparison is also discussed in this study, as this722

index is suitable for the comparison before and after the downscaling for a single site and a single method,723

it is not very useful to the comprehensive comparison on several sites. Therefore, we recommended to use724

this index carefully and as an independent indicator from the statistic results. Based on ���e� , accuracy725

decreasing is detected in all five downscaling methods, which may be caused by the spatial mismatch on726

fine scale and the fact that downscaling results tend to preserve spatial traits of downscaling predictors727

while to some extent miss the temporal changes of microwave SM product. In general, this phenomenon is728
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more likely to happen over complex land surface structures.729
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