000890923 001__ 890923
000890923 005__ 20220930130309.0
000890923 0247_ $$2doi$$a10.1016/j.jbc.2021.100499
000890923 0247_ $$2ISSN$$a0021-9258
000890923 0247_ $$2ISSN$$a1067-8816
000890923 0247_ $$2ISSN$$a1083-351X
000890923 0247_ $$2Handle$$a2128/29702
000890923 0247_ $$2altmetric$$aaltmetric:101240559
000890923 0247_ $$2pmid$$apmid:33667547
000890923 0247_ $$2WOS$$aWOS:000672866400473
000890923 037__ $$aFZJ-2021-01248
000890923 082__ $$a540
000890923 1001_ $$0P:(DE-Juel1)165994$$aKönig, Anna S.$$b0
000890923 245__ $$aStructural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy
000890923 260__ $$aBethesda, Md.$$bSoc.$$c2021
000890923 3367_ $$2DRIVER$$aarticle
000890923 3367_ $$2DataCite$$aOutput Types/Journal article
000890923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640941904_23406
000890923 3367_ $$2BibTeX$$aARTICLE
000890923 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890923 3367_ $$00$$2EndNote$$aJournal Article
000890923 520__ $$aHuman PrP (huPrP) is a high-affinity receptor for oligomeric amyloid β (Aβ) protein aggregates. Binding of Aβ oligomers to membrane-anchored huPrP has been suggested to trigger neurotoxic cell signaling in Alzheimer’s disease, while an N-terminal soluble fragment of huPrP can sequester Aβ oligomers and reduce their toxicity. Synthetic oligomeric Aβ species are known to be heterogeneous, dynamic, and transient, rendering their structural investigation particularly challenging. Here, using huPrP to preserve Aβ oligomers by coprecipitating them into large heteroassemblies, we investigated the conformations of Aβ(1–42) oligomers and huPrP in the complex by solid-state MAS NMR spectroscopy. The disordered N-terminal region of huPrP becomes immobilized in the complex and therefore visible in dipolar spectra without adopting chemical shifts characteristic of a regular secondary structure. Most of the well-defined C-terminal part of huPrP is part of the rigid complex, and solid-state NMR spectra suggest a loss in regular secondary structure in the two C-terminal α-helices. For Aβ(1–42) oligomers in complex with huPrP, secondary chemical shifts reveal substantial β-strand content. Importantly, not all Aβ(1–42) molecules within the complex have identical conformations. Comparison with the chemical shifts of synthetic Aβ fibrils suggests that the Aβ oligomer preparation represents a heterogeneous mixture of β-strand-rich assemblies, of which some have the potential to evolve and elongate into different fibril polymorphs, reflecting a general propensity of Aβ to adopt variable β-strand-rich conformers. Taken together, our results reveal structural changes in huPrP upon binding to Aβ oligomers that suggest a role of the C terminus of huPrP in cell signaling. Trapping Aβ(1–42) oligomers by binding to huPrP has proved to be a useful tool for studying the structure of these highly heterogeneous β-strand-rich assemblies.
000890923 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890923 588__ $$aDataset connected to CrossRef
000890923 7001_ $$0P:(DE-Juel1)161275$$aRösener, Nadine$$b1
000890923 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b2
000890923 7001_ $$0P:(DE-Juel1)131709$$aTusche, Markus$$b3$$ufzj
000890923 7001_ $$0P:(DE-HGF)0$$aFlender, Daniel$$b4
000890923 7001_ $$0P:(DE-HGF)0$$aReinartz, Elke$$b5
000890923 7001_ $$0P:(DE-Juel1)166306$$aHoyer, Wolfgang$$b6
000890923 7001_ $$0P:(DE-Juel1)144510$$aNeudecker, Philipp$$b7
000890923 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b8
000890923 7001_ $$0P:(DE-Juel1)132002$$aHeise, Henrike$$b9$$eCorresponding author
000890923 773__ $$0PERI:(DE-600)1474604-9$$a10.1016/j.jbc.2021.100499$$gVol. 296, p. 100499 -$$p100499 -$$tThe journal of biological chemistry$$v296$$x0021-9258$$y2021
000890923 8564_ $$uhttps://juser.fz-juelich.de/record/890923/files/Invoice_OAD0000104641.pdf
000890923 8564_ $$uhttps://juser.fz-juelich.de/record/890923/files/PIIS0021925821002751.pdf$$yOpenAccess
000890923 8767_ $$8OAD0000104641$$92021-03-02$$d2021-03-04$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200164412 / 2021
000890923 909CO $$ooai:juser.fz-juelich.de:890923$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000890923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165994$$aForschungszentrum Jülich$$b0$$kFZJ
000890923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161275$$aForschungszentrum Jülich$$b1$$kFZJ
000890923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich$$b2$$kFZJ
000890923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131709$$aForschungszentrum Jülich$$b3$$kFZJ
000890923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166306$$aForschungszentrum Jülich$$b6$$kFZJ
000890923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144510$$aForschungszentrum Jülich$$b7$$kFZJ
000890923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b8$$kFZJ
000890923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132002$$aForschungszentrum Jülich$$b9$$kFZJ
000890923 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890923 9141_ $$y2021
000890923 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890923 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2019$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890923 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-04
000890923 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000890923 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000890923 980__ $$ajournal
000890923 980__ $$aVDB
000890923 980__ $$aUNRESTRICTED
000890923 980__ $$aI:(DE-Juel1)IBI-7-20200312
000890923 980__ $$aAPC
000890923 9801_ $$aAPC
000890923 9801_ $$aFullTexts