Hauptseite > Publikationsdatenbank > Improving crosshole ground penetrating radar full-waveform inversion results by using progressively expanded bandwidths of the data > print |
001 | 890930 | ||
005 | 20230418142009.0 | ||
024 | 7 | _ | |a 10.1002/nsg.12154 |2 doi |
024 | 7 | _ | |a 2128/28306 |2 Handle |
024 | 7 | _ | |a WOS:000647234500001 |2 WOS |
037 | _ | _ | |a FZJ-2021-01255 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Zhou, Zhen |0 P:(DE-Juel1)169315 |b 0 |e Corresponding author |
245 | _ | _ | |a Improving crosshole ground penetrating radar full-waveform inversion results by using progressively expanded bandwidths of the data |
260 | _ | _ | |a Oxford |c 2021 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1639037091_7732 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In the last decade, time-domain crosshole ground-penetrating radar full-waveform inversion has been applied to several different test sites and has improved the resolution and reconstruction of subsurface properties. The full-waveform inversion requires several diligent executed pre-processing steps to guarantee a successful inversion and to minimize the risk of being trapped in a local minimum. Thereby, one important aspect is the starting models of the full-waveform inversion. Generally, adequate starting models need to fulfil the half-wavelength criterion, which means that the modelled data based on the starting models need to be within half of the wavelength of the measured data in the entire investigation area. Ray-based approaches can provide such starting models, but in the presence of high contrast layers, such results do not always fulfil this criterion and need to be improved and updated. Therefore, precise and detailed data processing and a good understanding of experimental ground-penetrating radar data are necessary to avoid erroneous full-waveform inversion results. Here, we introduce a new approach, which improves the starting model problem and is able to enhance the reconstruction of the subsurface medium properties. The new approach tames the non-linearity issue caused by high contrast complex media, by applying bandpass filters with different passband ranges during the inversion to the modelled and measured ground-penetrating radar data. Thereby, these bandpass filters are considered for a certain number of iterations and are progressively expanded to the selected maximum frequency bandwidth. The resulting permittivity full-waveform inversion model is applied to update the effective source wavelet and is used as an updated starting model in the full-waveform inversion with the full bandwidth data. This full-waveform inversion is able to enhance the reconstruction of the permittivity and electrical conductivity results in contrast to the standard full-waveform inversion results. The new approach has been applied and tested on two synthetic case studies and an experimental data set. The field data were additionally compared with cone penetration test data for validation. |
536 | _ | _ | |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217) |0 G:(DE-HGF)POF4-217 |c POF4-217 |f POF IV |x 0 |
536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 1 |
700 | 1 | _ | |a Klotzsche, Anja |0 P:(DE-Juel1)129483 |b 1 |u fzj |
700 | 1 | _ | |a Vereecken, Harry |0 P:(DE-Juel1)129549 |b 2 |u fzj |
773 | _ | _ | |a 10.1002/nsg.12154 |0 PERI:(DE-600)2247665-9 |n 4 |p 465-487 |t Near surface geophysics |v 19 |y 2021 |x 1569-4445 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890930/files/nsg.12154.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:890930 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB:Earth_Environment |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)169315 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129483 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129549 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 1 |
913 | 0 | _ | |a DE-HGF |b Erde und Umwelt |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-200 |4 G:(DE-HGF)POF |v Terrestrial Systems: From Observation to Prediction |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEAR SURF GEOPHYS : 2019 |d 2021-01-27 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|