001     890936
005     20230123101844.0
024 7 _ |a 10.3390/ani11030710
|2 doi
024 7 _ |a 2128/31398
|2 Handle
024 7 _ |a 33807941
|2 pmid
024 7 _ |a WOS:000633194800001
|2 WOS
037 _ _ |a FZJ-2021-01258
082 _ _ |a 590
100 1 _ |a Kroll, Tina
|0 P:(DE-Juel1)131691
|b 0
|e Corresponding author
245 _ _ |a Additional Assessment of Fecal Corticosterone Metabolites Improves Visual Rating in the Evaluation of Stress Responses of Laboratory Rats
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1656492813_25194
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Since animal experiments cannot be completely avoided, the pain, suffering, and distress of laboratory animals must be minimized. To this end, a major prerequisite is reliable assessment of pain and distress. Usually, evaluation of animal welfare is done by visual inspection and score sheets. However, relatively little is known about whether standardized, but subjective, score sheets are able to reliably reflect the status of the animals. The current study aimed to compare visual assessment scores and changes in body weight with concentrations of fecal corticosterone metabolites (FCMs) in a neuroscientific experimental setup. Additionally, effects of refinement procedures were investigated. Eight male adult Sprague-Dawley rats underwent several experimental interventions, including electroencephalograph electrode implantation and subsequent recording, positron emission tomography (PET), and sleep deprivation (SD) by motorized activity wheels. Additional 16 rats were either used as controls without any treatment or to evaluate refinement strategies. Stress responses were determined on a daily basis by means of measuring FCMs, body weight, and evaluation of the animals’ welfare by standardized score sheets. Surgery provoked a significant elevation of FCM levels for up to five days. Increases in FCMs due to PET procedures or SD in activity wheels were also highly significant, while visual assessment scores did not indicate elevated stress levels and body weights remained constant. Visual assessment scores correlate with neither changes in body weight nor increases in FCM levels. Habituation procedures to activity wheels used for SD had no impact on corticosterone release. Our results revealed that actual score sheets for visual assessment of animal welfare did not mirror physiological stress responses assessed by FCM measurements. Moreover, small changes in body weight did not correlate with FCM concentration either. In conclusion, as visual assessment is a method allowing immediate interventions on suffering animals to alleviate burden, timely stress assessment in experimental rodents via score sheets should be ideally complemented by validated objective measures (e.g., fecal FCM measured by well-established assays for reliable detection of FCMs). This will complete a comprehensive appraisal of the animals’ welfare status in a retrospective manner and refine stressor procedures in the long run.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kornadt-Beck, Nikola
|0 P:(DE-Juel1)131620
|b 1
|u fzj
700 1 _ |a Oskamp, Angela
|0 P:(DE-Juel1)131712
|b 2
|u fzj
700 1 _ |a Elmenhorst, David
|0 P:(DE-Juel1)131679
|b 3
|u fzj
700 1 _ |a Touma, Chadi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Palme, Rupert
|0 0000-0001-9466-3662
|b 5
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 6
|u fzj
773 _ _ |a 10.3390/ani11030710
|g Vol. 11, no. 3, p. 710 -
|0 PERI:(DE-600)2606558-7
|n 3
|p 710 -
|t Animals / Molecular Diversity Preservation International, MDPI
|v 11
|y 2021
|x 2076-2615
856 4 _ |u https://juser.fz-juelich.de/record/890936/files/Invoice_MDPI_animals-1094771_1530.00CHF.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890936/files/animals-11-00710.pdf
909 C O |o oai:juser.fz-juelich.de:890936
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131691
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131712
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131679
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131672
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANIMALS-BASEL : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21