000890938 001__ 890938
000890938 005__ 20230123101844.0
000890938 0247_ $$2doi$$a10.1103/PhysRevApplied.15.034080
000890938 0247_ $$2ISSN$$a2331-7019
000890938 0247_ $$2ISSN$$a2331-7043
000890938 0247_ $$2Handle$$a2128/31625
000890938 0247_ $$2WOS$$aWOS:000672600600002
000890938 037__ $$aFZJ-2021-01260
000890938 041__ $$aEnglish
000890938 082__ $$a530
000890938 1001_ $$0P:(DE-Juel1)185025$$aWittler, Nicolas$$b0
000890938 245__ $$aIntegrated Tool Set for Control, Calibration, and Characterization of Quantum Devices Applied to Superconducting Qubits
000890938 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2021
000890938 3367_ $$2DRIVER$$aarticle
000890938 3367_ $$2DataCite$$aOutput Types/Journal article
000890938 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661151527_4409
000890938 3367_ $$2BibTeX$$aARTICLE
000890938 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890938 3367_ $$00$$2EndNote$$aJournal Article
000890938 520__ $$aEfforts to scale-up quantum computation have reached a point where the principal limiting factor is not the number of qubits, but the entangling gate infidelity. However, the highly detailed system characterization required to understand the underlying error sources is an arduous process and impractical with increasing chip size. Open-loop optimal control techniques allow for the improvement of gates but are limited by the models they are based on. To rectify the situation, we provide an integrated open-source tool set for control, calibration, and characterization (C3), capable of open-loop pulse optimization, model-free calibration, model fitting, and refinement. We present a methodology to combine these tools to find a quantitatively accurate system model, high-fidelity gates, and an approximate error budget, all based on a high-performance, feature-rich simulator. We illustrate our methods using simulated fixed-frequency superconducting qubits for which we learn model parameters with less than 1% error and derive a coherence-limited cross-resonance gate that achieves 99.6% fidelity without the need for calibration.
000890938 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000890938 588__ $$aDataset connected to CrossRef
000890938 7001_ $$0P:(DE-HGF)0$$aRoy, Federico$$b1
000890938 7001_ $$0P:(DE-Juel1)185024$$aPack, Kevin$$b2
000890938 7001_ $$0P:(DE-HGF)0$$aWerninghaus, Max$$b3
000890938 7001_ $$00000-0002-3269-476X$$aRoy, Anurag Saha$$b4
000890938 7001_ $$00000-0002-5523-9807$$aEgger, Daniel J.$$b5
000890938 7001_ $$0P:(DE-HGF)0$$aFilipp, Stefan$$b6
000890938 7001_ $$0P:(DE-HGF)0$$aWilhelm, Frank K.$$b7
000890938 7001_ $$0P:(DE-Juel1)184984$$aMachnes, Shai$$b8$$eCorresponding author
000890938 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.15.034080$$gVol. 15, no. 3, p. 034080$$n3$$p034080$$tPhysical review applied$$v15$$x2331-7019$$y2021
000890938 8564_ $$uhttps://juser.fz-juelich.de/record/890938/files/INV_21_MAR_005276-1.pdf
000890938 8564_ $$uhttps://juser.fz-juelich.de/record/890938/files/PhysRevApplied.15.034080.pdf$$yOpenAccess
000890938 8767_ $$8INV/21/MAR/005276$$92021-03-03$$d2021-03-09$$eHybrid-OA$$jZahlung erfolgt$$zUSD 1250.00
000890938 909CO $$ooai:juser.fz-juelich.de:890938$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185025$$aForschungszentrum Jülich$$b0$$kFZJ
000890938 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)185025$$a PGI-12$$b0
000890938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185024$$aForschungszentrum Jülich$$b2$$kFZJ
000890938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000890938 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a PGI-12$$b7
000890938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184984$$aForschungszentrum Jülich$$b8$$kFZJ
000890938 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000890938 9141_ $$y2022
000890938 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000890938 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000890938 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890938 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2019$$d2021-01-31
000890938 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000890938 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000890938 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000890938 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890938 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000890938 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000890938 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000890938 920__ $$lyes
000890938 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
000890938 980__ $$ajournal
000890938 980__ $$aVDB
000890938 980__ $$aUNRESTRICTED
000890938 980__ $$aI:(DE-Juel1)PGI-12-20200716
000890938 980__ $$aAPC
000890938 9801_ $$aAPC
000890938 9801_ $$aFullTexts