001     890938
005     20230123101844.0
024 7 _ |a 10.1103/PhysRevApplied.15.034080
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 2128/31625
|2 Handle
024 7 _ |a WOS:000672600600002
|2 WOS
037 _ _ |a FZJ-2021-01260
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Wittler, Nicolas
|0 P:(DE-Juel1)185025
|b 0
245 _ _ |a Integrated Tool Set for Control, Calibration, and Characterization of Quantum Devices Applied to Superconducting Qubits
260 _ _ |a College Park, Md. [u.a.]
|c 2021
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661151527_4409
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Efforts to scale-up quantum computation have reached a point where the principal limiting factor is not the number of qubits, but the entangling gate infidelity. However, the highly detailed system characterization required to understand the underlying error sources is an arduous process and impractical with increasing chip size. Open-loop optimal control techniques allow for the improvement of gates but are limited by the models they are based on. To rectify the situation, we provide an integrated open-source tool set for control, calibration, and characterization (C3), capable of open-loop pulse optimization, model-free calibration, model fitting, and refinement. We present a methodology to combine these tools to find a quantitatively accurate system model, high-fidelity gates, and an approximate error budget, all based on a high-performance, feature-rich simulator. We illustrate our methods using simulated fixed-frequency superconducting qubits for which we learn model parameters with less than 1% error and derive a coherence-limited cross-resonance gate that achieves 99.6% fidelity without the need for calibration.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Roy, Federico
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pack, Kevin
|0 P:(DE-Juel1)185024
|b 2
700 1 _ |a Werninghaus, Max
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Roy, Anurag Saha
|0 0000-0002-3269-476X
|b 4
700 1 _ |a Egger, Daniel J.
|0 0000-0002-5523-9807
|b 5
700 1 _ |a Filipp, Stefan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wilhelm, Frank K.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Machnes, Shai
|0 P:(DE-Juel1)184984
|b 8
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.15.034080
|g Vol. 15, no. 3, p. 034080
|0 PERI:(DE-600)2760310-6
|n 3
|p 034080
|t Physical review applied
|v 15
|y 2021
|x 2331-7019
856 4 _ |u https://juser.fz-juelich.de/record/890938/files/INV_21_MAR_005276-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890938/files/PhysRevApplied.15.034080.pdf
909 C O |o oai:juser.fz-juelich.de:890938
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185025
910 1 _ |a PGI-12
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)185025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185024
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a PGI-12
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)184984
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2019
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21