001     890946
005     20240313103115.0
024 7 _ |a 2128/28511
|2 Handle
037 _ _ |a FZJ-2021-01268
100 1 _ |a Keup, Christian
|0 P:(DE-Juel1)171384
|b 0
|e Corresponding author
|u fzj
111 2 _ |a COSYNE 2021
|c virtual
|d 2021-02-24 - 2021-02-26
|w NA
245 _ _ |a Transient chaotic SNR amplification
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1629116318_5910
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a The short summary video can be found online at https://vimeo.com/514398744
520 _ _ |a Strongly chaotic non-linear networks strongly separate inputs, but are believed to be useless for classification tasksbecause also irrelevant (noise) differences within any class are exacerbated, leading to bad generalization. We show thisis actually not the case during the initial time period following input presentation: During this time, the representationis dominated by expansion, but not by mixing, and larger differences (between classes) expand faster than smallerdifferences (within classes). Therefore, the representation is disentangled by the dynamics, and when classifying thenetwork state by linear readouts, the signal-to-noise ratio (SNR) actually increases, before it eventually deteriorateswhen mixing begins to dominate. We show that this is a general effect in high-dimensional non-linear chaotic systems,and demonstrate it in spiking, continuous rate, and LSTM networks. The transient SNR amplification is always fast(within 50 ms) for spiking networks, while its timescale in continuous valued networks depends on the distance to theedge of chaos. Moreover, this fast, noise-resilient transient disentanglement of representations is in line with empiricalevidence: the olfactory bulb, for example, rapidly enhances the separability of sensory representations in a singlerecurrent layer, being the initial processing stage of a relatively flat hierarchy.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|x 0
|f POF IV
536 _ _ |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)
|0 G:(DE-82)EXS-SF-neuroIC002
|c EXS-SF-neuroIC002
|x 1
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|x 2
|f MSNN
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 3
536 _ _ |a ERS Prep Fund - Exploratory Research Space: Prep Fund als Anschubfinanzierung zur Schließung strategischer Lücken (EXS-PF)
|0 G:(DE-82)EXS-PF
|c EXS-PF
|x 4
700 1 _ |a Kühn, Tobias
|0 P:(DE-Juel1)164473
|b 1
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 2
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 3
|e Last author
|u fzj
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/890946/files/%285min_summary%29_Transient_chaotic_SNR_amplification.mp4
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890946/files/%28extended_abstract%29_Transient_chaotic_SNR_amplification.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/890946/files/%28poster_slides%29_Transient_chaotic_SNR_amplification.pdf
909 C O |o oai:juser.fz-juelich.de:890946
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21