Transient chaotic SNR amplification

Strongly chaotic non-linear networks strongly separate inputs, but are believed to be useless for classification tasks
because also irrelevant (noise) differences within any class are exacerbated, leading to bad generalization. We show this
is actually not the case during the initial time period following input presentation: During this time, the representation
is dominated by expansion, but not by mixing, and larger differences (between classes) expand faster than smaller
differences (within classes). Therefore, the representation is disentangled by the dynamics, and when classifying the
network state by linear readouts, the signal-to-noise ratio (SNR) actually increases, before it eventually deteriorates
when mixing begins to dominate. We show that this is a general effect in high-dimensional non-linear chaotic systems,
and demonstrate it in spiking, continuous rate, and LSTM networks. The transient SNR amplification is always fast
(within 50 ms) for spiking networks, while its timescale in continuous valued networks depends on the distance to the
edge of chaos. Moreover, this fast, noise-resilient transient disentanglement of representations is in line with empirical
evidence: the olfactory bulb, for example, rapidly enhances the separability of sensory representations in a single
recurrent layer, being the initial processing stage of a relatively flat hierarchy.

Additional detail

We exemplify and analyze the effect of transient chaotic SNR amplification in the following setting: Consider
a classification task consisting of P classes of L-dimensional vectors zf € [—1,1]L. Each class p is a Gaussian
distribution with a random mean vector given by zf, and standard deviation o controlling the variability within the
class. If P > 2L, the linear separability of the classes is very low, relating to Cover’s theorem [1]. We employ a
reservoir computing paradigm to solve the task: A random recurrent network of N > L neurons is presented at
to with an L - dimensional pattern drawn from the task distribution, and for any fixed time ¢, linear readouts are
trained encode by a one-hot vector the class that the pattern was drawn from. As the first network model, we consider

classical continuous-valued units
70th =—-h+JT(h), (1)

where T is a sigmoid non-linearity, the entries of J € RV*Y are drawn from A(0,g?/N), and g controls the network
dynamics to be in the regular (g < 1) or chaotic (g > 1) regime [2]. It has been extensively argued that the parameter
regime close to the edge of chaos, that is g &~ 1, optimizes the computational power of such networks when used
in reservoir computing [e.g., 3, 4]. Here we instead investigate the strongly chaotic regime, g > 1. What is the
characteristic feature of such networks? Any two close points in state space are drawn apart by the dynamics. While
this could benefit a separation of entangled representations, it has been argued that also any noise is strongly amplified,
and therefore computational utility should be poor in the strongly chaotic regime [3]. However, if the task does not
require long memory, the network can perform powerful transient computation. This is related to how quickly points
in state space diverge depending on their distance, which can be calculated analytically by a replica calculation using
dynamical mean-field theory, leading to [5, 6]

(0 +1)(0s + DR (t,5) = ¢ fr(Qo, Q"?), 2
where Q(1?)(t, s) is the average correlation between two trajectories at times ¢, s and fr(Qo, @Q*?) = (T(h1)T(hs))
(12)
with the average taken with respect to (hy, hg) ~ N(O, ( Q%OQ) QQ )) Integrating this equation, we find that short
0

after stimulus presentation, two points that are close diverge slower than two points that are further apart (Fig la).
Ultimately, distances saturate at the maximal distance determined by the bounded state space volume. What does
this mean for the classification task? Initially after presentation, the representation has dimensionality L < N and
is not linearly separable by the readouts because also 2L < P. But when the chaotic dynamics begins to expand
the representation, the larger differences between classes expand faster than the smaller within class variability.
Crucially, the larger differences are also more strongly affected by the non-linearity, which embeds them into the
higher dimensional state space and improves the linear separability of the classes. This trend finally reverses when the
expansion saturates and mixing begins to dominate. Therefore the classification accuracy transiently peaks, Fig la
(inset). We argue that this is a general effect in high-dimensional, non-linear chaotic systems. Here we demonstrate
it also for a recurrent LSTM network [7], Fig 1b, and an inhibitory LIF (leaky-integrate-and-fire) network, Fig lc.
While for the continuous network (1) the link between distances and dimensionality was explained by a qualitative
argument, this link can be made explicitly for the spiking LIF network: Binning the spike trains by a moving window



, 40 -

100 75
o) O] O]
g g &
7 50 Z 0] 7"
o o o 95
= 3 0 %

01 01 , : 01 , ,
0 50 100 0 50 100

time [7] time [7] time [ms]

Figure 1. Transient chaotic SNR amplification in continuous valued (a), LSTM (b) and LIF (c) networks. a
Average inter-class distances (green), intra-class distances (orange) and difference between the two (blue). Numerical solutions
of equation (2) (dashed). Inset shows classification accuracy on unseen examples. Network parameters: N = 250, g = 5.8.
Task parameters: P =50, L = 8 and o = 0.3, readouts trained on 100 examples per pattern. b Same for LSTM network with
N = 200. c¢ Same for inhibitory LIF network in the asychronous-irregular regime with fixed in-degree K = 125, average firing
rate v = 19 Hz, and N = 500.

whose width represents the membrane time constant of the readout neurons, we obtain at each time a binary vector
€ {0,1}" if the activity is sparse enough to make the occurrence of two spikes in one bin unlikely. Due to the geometry
of the {0,1}¥ hyper-cube, a set of points with average mutual distances d < N must also span d dimensions. Thus
the average distance between trajectories on the hypercube can be interpreted directly as the dimensionality of the
representation. In Fig 1c we again plot the average distance ds between two patterns of different classes, the average
distance d,, between two patterns of the same class, and their difference Ad = dg; — d,,, which can thus be interpreted
as the effective dimensionality of the representation that is not corrupted by noise, and is therefore predictive of the
classification accuracy, Fig lc (inset). The divergence speed of trajectories in the LIF network can be related to
the divergence rate between flux tubes, which are locally stable environments of trajectories coexisting with global
instability [8]. Also, their existence introduces an additional computational effect: Because any variability within a
flux tube is quenched by the network, a fraction of the noise is 'swallowed’ and not amplified. This causes a slowed
down rise of the noise dimensionality, and a non-zero plateau of the classification accuracy at late times (Fig 1c).

Finally, the olfactory system is a good candidate to rely on the transient computational mechanism we have
described, because it is specialized on pattern classification. Indeed, recordings in the antennal lobe of locusts [9], and
the olfactory bulb of zebrafish [10] and rats [11] show responses consistent with the here found mechanism, in that
the spatio-temporal activity patterns following odor presentation quickly decorrelate even for similar odors, and the
linear decoding accuracy of odor identity peaks during the initial transient, not after a stable state has been reached.
We formulate the following testable predictions for neural systems that implement classification by transient chaotic
SNR amplification:

1. Variability is small or quenched at stimulus onset, then transiently increases and reaches a stable value.
2. Not only the inter-class distances, but also the intra-class (noise) distances increase, although initially slower.

3. Decoding accuracy based on linear readouts trained at each time point shows a peak, and this peak occurs
before the distances saturate.
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