001     890956
005     20230127125338.0
024 7 _ |a 10.5194/egusphere-egu21-7596
|2 doi
024 7 _ |a 0022-7722
|2 ISSN
024 7 _ |a 1447-073X
|2 ISSN
024 7 _ |a 1447-6959
|2 ISSN
024 7 _ |a 2128/27286
|2 Handle
037 _ _ |a FZJ-2021-01272
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Betancourt, Clara
|0 P:(DE-Juel1)171435
|b 0
|e Corresponding author
111 2 _ |a EGU General Assembly 2021
|g vEGU21
|c Online
|d 2021-04-19 - 2021-04-30
|w Online
245 _ _ |a Global fine resolution mapping of ozone metrics through explainable machine learning
260 _ _ |c 2021
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1614863314_1630
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Through the availability of multi-year ground based ozone observations on a global scale, substantial geospatial meta data, and high performance computing capacities, it is now possible to use machine learning for a global data-driven ozone assessment. In this presentation, we will show a novel, completely data-driven approach to map tropospheric ozone globally.

Our goal is to interpolate ozone metrics and aggregated statistics from the database of the Tropospheric Ozone Assessment Report (TOAR) onto a global 0.1° x 0.1° resolution grid.  It is challenging to interpolate ozone, a toxic greenhouse gas because its formation depends on many interconnected environmental factors on small scales. We conduct the interpolation with various machine learning methods trained on aggregated hourly ozone data from five years at more than 5500 locations worldwide. We use several geospatial datasets as training inputs to provide proxy input for environmental factors controlling ozone formation, such as precursor emissions and climate. The resulting maps contain different ozone metrics, i.e. statistical aggregations which are widely used to assess air pollution impacts on health, vegetation, and climate.

The key aspects of this contribution are twofold: First, we apply explainable machine learning methods to the data-driven ozone assessment. Second, we discuss dominant uncertainties relevant to the ozone mapping and quantify their impact whenever possible. Our methods include a thorough a-priori uncertainty estimation of the various data and methods, assessment of scientific consistency, finding critical model parameters, using ensemble methods, and performing error modeling.

Our work aims to increase the reliability and integrity of the derived ozone maps through the provision of scientific robustness to a data-centric machine learning task. This study hence represents a blueprint for how to formulate an environmental machine learning task scientifically, gather the necessary data, and develop a data-driven workflow that focuses on optimizing transparency and applicability of its product to maximize its scientific knowledge return.


536 _ _ |a 511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511)
|0 G:(DE-HGF)POF4-511
|c POF4-511
|x 0
|f POF IV
536 _ _ |a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|0 G:(EU-Grant)787576
|c 787576
|x 1
|f ERC-2017-ADG
536 _ _ |a AI Strategy for Earth system data (kiste_20200501)
|0 G:(DE-Juel1)kiste_20200501
|c kiste_20200501
|x 2
|f AI Strategy for Earth system data
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stadtler, Scarlet
|0 P:(DE-Juel1)180752
|b 1
|u fzj
700 1 _ |a Stomberg, Timo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Edrich, Ann-Kathrin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Patnala, Ankit
|0 P:(DE-Juel1)186635
|b 4
|u fzj
700 1 _ |a Roscher, Ribana
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kowalski, Julia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 7
773 _ _ |a 10.5194/egusphere-egu21-7596
856 4 _ |u https://juser.fz-juelich.de/record/890956/files/20210113_betancourt_egu_abstract.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890956
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171435
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180752
910 1 _ |a Universität Bonn
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)186635
910 1 _ |a Universität Bonn
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)6952
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Data-Intensive Science and Federated Computing
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAT SCI INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21