000890959 001__ 890959
000890959 005__ 20240610120100.0
000890959 0247_ $$2doi$$a10.1038/s42005-020-00515-x
000890959 0247_ $$2Handle$$a2128/27293
000890959 0247_ $$2WOS$$aWOS:000624638700001
000890959 0247_ $$2altmetric$$aaltmetric:102865634
000890959 037__ $$aFZJ-2021-01275
000890959 082__ $$a530
000890959 1001_ $$0P:(DE-Juel1)174586$$aSarkar, Debarati$$b0$$ufzj
000890959 245__ $$aA minimal model for structure, dynamics, and tension of monolayered cell colonies553
000890959 260__ $$aLondon$$bSpringer Nature$$c2021
000890959 3367_ $$2DRIVER$$aarticle
000890959 3367_ $$2DataCite$$aOutput Types/Journal article
000890959 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614960006_29026
000890959 3367_ $$2BibTeX$$aARTICLE
000890959 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890959 3367_ $$00$$2EndNote$$aJournal Article
000890959 520__ $$aThe motion of cells in tissues is an ubiquitous phenomenon. In particular, in monolayered cell colonies in vitro, pronounced collective behavior with swirl-like motion has been observed deep within a cell colony, while at the same time, the colony remains cohesive, with not a single cell escaping at the edge. Thus, the colony displays liquid-like properties inside, in coexistence with a cell-free “vacuum” outside. We propose an active Brownian particle model with attraction, in which the interaction potential has a broad minimum to give particles enough wiggling space to be collectively in the fluid state. We demonstrate that for moderate propulsion, this model can generate the fluid-vacuum coexistence described above. In addition, the combination of the fluid nature of the colony with cohesion leads to preferred orientation of the cell polarity, pointing outward, at the edge, which in turn gives rise to a tensile stress in the colony—as observed experimentally for epithelial sheets. For stronger propulsion, collective detachment of cell clusters is predicted. Further addition of an alignment preference of cell polarity and velocity direction results in enhanced coordinated, swirl-like motion, increased tensile stress and cell-cluster detachment.
000890959 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890959 588__ $$aDataset connected to CrossRef
000890959 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1
000890959 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b2$$eCorresponding author$$ufzj
000890959 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-020-00515-x$$gVol. 4, no. 1, p. 36$$n1$$p36$$tCommunications Physics$$v4$$x2399-3650$$y2021
000890959 8564_ $$uhttps://juser.fz-juelich.de/record/890959/files/2006.04519.pdf$$yOpenAccess
000890959 8564_ $$uhttps://juser.fz-juelich.de/record/890959/files/s42005-020-00515-x.pdf$$yOpenAccess
000890959 8767_ $$8SN-2021-00411-b$$92021-06-18$$d2021-06-21$$eAPC$$jDEAL$$lDEAL: Springer
000890959 909CO $$ooai:juser.fz-juelich.de:890959$$popenaire$$pOpenAPC$$popen_access$$pdnbdelivery$$popenCost$$pVDB$$pdriver
000890959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174586$$aForschungszentrum Jülich$$b0$$kFZJ
000890959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ
000890959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b2$$kFZJ
000890959 9130_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000890959 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890959 9141_ $$y2021
000890959 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000890959 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890959 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2019$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890959 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000890959 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000890959 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000890959 9801_ $$aFullTexts
000890959 980__ $$ajournal
000890959 980__ $$aVDB
000890959 980__ $$aUNRESTRICTED
000890959 980__ $$aI:(DE-Juel1)IBI-5-20200312
000890959 980__ $$aAPC
000890959 981__ $$aI:(DE-Juel1)IAS-2-20090406