000890960 001__ 890960
000890960 005__ 20240708132830.0
000890960 037__ $$aFZJ-2021-01276
000890960 1001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b0$$eCorresponding author
000890960 1112_ $$aCentre Européen de Calcul Atomique et Moléculaire 2021$$conline$$d2021-03-02 - 2021-03-05$$wGermany
000890960 245__ $$aSome developments of solid-state sodium batteries in Forschungszentrum Jülich
000890960 260__ $$c2021
000890960 3367_ $$033$$2EndNote$$aConference Paper
000890960 3367_ $$2DataCite$$aOther
000890960 3367_ $$2BibTeX$$aINPROCEEDINGS
000890960 3367_ $$2DRIVER$$aconferenceObject
000890960 3367_ $$2ORCID$$aLECTURE_SPEECH
000890960 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1617954765_7594$$xInvited
000890960 520__ $$aSome developments of solid-state sodium batteries in Forschungszentrum JülichQianli Ma1, Tu Lan1, Chih-Long Tsai1, Frank Tietz1, Dina Fattakhova-Rohlfing1,2, Olivier Guillon1,3 1. Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), 52425 Jülich, Germany2. Department of Engineering and Center for Nanointegration Duisburg‐Essen (CENIDE), Universität Duisburg‐Essen, 47057 Duisburg, Germany3. Jülich Aachen Research Alliance, JARA-Energy, 52425 Jülich, Germanye-mail address: q.ma@fz-juelich.deCompared to their lithium counterpart, solid-state sodium battery (SSNB) is regarded to have similar properties but is a much less mature technology because it is much less addressed. Besides their well-known natural endowment like high element abundance, low price etc., in the present study, some technological advantages of SSNBs are discussed in comparison with solid-state lithium batteries (SSLBs). Very recently, Na3.4Zr2Si2.4P0.6O12 (NZSP) ceramics were reported to have total conductivity of 5 × 10-3 S cm-1 at 25 °C, higher than previously reported polycrystalline Na-ion conductors.[1] Inhibition of dendrite growth in SSLBs and SSNBs has long been a challenge to the field. In the present study, with simply sticking sodium metal to NZSP ceramic pellets and without external pressure applied during operation, the critical current density of Na/NZSP/Na symmetric SSNBs reaches 9 mA cm-2 at 25°C. The cells can be stably operated at areal capacity of 5 mAh cm-2 (per half cycle, with 1.0 mA cm-2) at 25°C for 300 h in a galvanostatic cycling measurement without any dendrite formation. This critical current density is much higher than those of existing SSLBs operated at similar conditions. The influence of metal self-diffusion on the dendritic plating is the main explanation of the high dendrite tolerance of SSNBs. In this report, the inter-ceramic contact problems in the cathode are also solved by combining the infiltration of a porous electrolyte scaffold by precursor solution with in situ synthesis of electrode active material.[2,3] The resulting full cells using Na3V2P3O12, NZSP and Na as the positive electrode, electrolyte and negative electrode materials, respectively, can be stably operated with a capacity of 0.55 mAh cm-2 at high rate of 0.5 mA cm-2. This is the first successful example showing that contact problems between rigid electrolyte and electrode materials can be solved without using any soft phase (liquid, polymers, ionic liquids etc.) as an accommodation or wetting medium. Since SSNBs have these advantages while SSLBs have not, the future roadmap of the development of solid-state batteries may shift from SSLBs towards SSNBs despite the higher molar weight of the sodium compounds in comparison to the Li analogues.[1] Q. Ma, C.-L. Tsai, X.-K. Wei, M. Heggen, F. Tietz, J. T. S. Irvine, J. Mater. Chem. A, 2019, 7, 7766–7776.[2] T. Lan, C.-L. Tsai, F. Tietz, X.-K. Wei, M.Heggen, R. E. Dunin-Borkowski, R.Wang, Y. Xiao, Q. Ma, O. Guillon, Nano Energy, 2019, 65, 104040. [3] C.-L. Tsai, T. Lan, C. Dellen, Y. Ling, Q. Ma, D. Fattakhova-Rohlfing, O. Guillon, F. Tietz, J. Power Sources 2020, 476, 228666.
000890960 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000890960 7001_ $$0P:(DE-Juel1)171223$$aLan, Tu$$b1
000890960 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b2
000890960 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b3
000890960 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4
000890960 909CO $$ooai:juser.fz-juelich.de:890960$$pVDB
000890960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b0$$kFZJ
000890960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171223$$aForschungszentrum Jülich$$b1$$kFZJ
000890960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b2$$kFZJ
000890960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b3$$kFZJ
000890960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000890960 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000890960 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000890960 9141_ $$y2021
000890960 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000890960 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000890960 980__ $$aconf
000890960 980__ $$aVDB
000890960 980__ $$aI:(DE-Juel1)IEK-1-20101013
000890960 980__ $$aI:(DE-82)080011_20140620
000890960 980__ $$aUNRESTRICTED
000890960 981__ $$aI:(DE-Juel1)IMD-2-20101013