| Home > Publications database > Representing chemical history for ozone time-series predictions - a method development study for deep learning models > print |
| 001 | 890961 | ||
| 005 | 20230127125338.0 | ||
| 024 | 7 | _ | |a 10.5194/egusphere-egu21-12146 |2 doi |
| 024 | 7 | _ | |a 0022-7722 |2 ISSN |
| 024 | 7 | _ | |a 1447-073X |2 ISSN |
| 024 | 7 | _ | |a 1447-6959 |2 ISSN |
| 024 | 7 | _ | |a 2128/29874 |2 Handle |
| 037 | _ | _ | |a FZJ-2021-01277 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Kleinert, Felix |0 P:(DE-Juel1)176602 |b 0 |e Corresponding author |
| 111 | 2 | _ | |a EGU General Assembly 2021 |g vEGU2021 |c Vienna (online) |d 2021-04-19 - 2021-04-30 |w Austria |
| 245 | _ | _ | |a Representing chemical history for ozone time-series predictions - a method development study for deep learning models |
| 260 | _ | _ | |c 2021 |
| 336 | 7 | _ | |a Abstract |b abstract |m abstract |0 PUB:(DE-HGF)1 |s 1641379342_2751 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Conference Abstract |2 DataCite |
| 336 | 7 | _ | |a OTHER |2 ORCID |
| 520 | _ | _ | |a Machine learning techniques like deep learning gained enormous momentum in recent years. This was mainly caused by the success story of the main drivers like image and speech recognition, video prediction and autonomous driving, to name just a few. |
| 536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |a IntelliAQ - Artificial Intelligence for Air Quality (787576) |0 G:(EU-Grant)787576 |c 787576 |f ERC-2017-ADG |x 1 |
| 536 | _ | _ | |0 G:(DE-Juel-1)ESDE |a Earth System Data Exploration (ESDE) |c ESDE |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Leufen, Lukas H. |0 P:(DE-Juel1)177004 |b 1 |
| 700 | 1 | _ | |a Lupascu, Aurelia |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Butler, Tim |0 0000-0002-2219-4657 |b 3 |
| 700 | 1 | _ | |a Schultz, Martin G. |0 P:(DE-Juel1)6952 |b 4 |
| 773 | _ | _ | |a 10.5194/egusphere-egu21-12146 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/890961/files/Abstract.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:890961 |p openaire |p open_access |p VDB |p driver |p ec_fundedresources |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176602 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)177004 |
| 910 | 1 | _ | |a Institute for Advanced Sustainability Studies, Potsdam |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Institute for Advanced Sustainability Studies, Potsdam |0 I:(DE-HGF)0 |b 3 |6 0000-0002-2219-4657 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)6952 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANAT SCI INT : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a abstract |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|