DAY 1: SUPERCOMPUTING

Supercomputer architecture and MPI primer

2021-02-01 | Stefan Kesselheim | Helmholtz Al @ JSC

Forschungszentru

JJ JULICH

OUTLINE

Parallelization Strategies

Parallelization with MPI

Tutorial Tasks

METRICS

Strong Scaling

Strong Scaling: How does the time to solve the same problem {y on the number of compute units?

Speedup = L}
TN

Weak Scaling

Weak Scaling: How does the time to solve a proportionally larger Ty problem on the number of
compute units?

Speedup = Nt—1
Tn

Ideally, Speedup = N.
Better look at efficiency: Speedup/N.

AHMDAHLS LAW OF STRONG SCALING

N=1
Serial
N=4
Para
Para
Serial
Para
Para

Parallel

1

Amdahl's law

Number of processors

Attention
Strong scaling is difficult!

DOMAIN DECOMPOSITION

= The computational domain is composed into N spatial regions.
= Data (e.g. flow fields, particle forces) at the boundary is communicated
= Load Balancing requires adaptive decompositions.

oy S
'ésﬁ s
L [;é..

e

o
Y
ia

_
|
,.10
8
L]

=
-
A ".'4'
R |
\N

32 64

PARALLELISM IN ML

Image
Model parallelism: Concurrent execution of Model parallelism
different parts of the model
Data parallelism: Compute units perform
calculation of different data
Layer pipelining: Different layers on different
compute units.

Machine 2

Workload partitioning

PC i Pl
e Y |[=. g 0 @@,jr} B
S NN PI P2 P3

(a) Data Parallelism (b) Maodel Parallelism (c) Layer Pipelining

Ben-Nun et al., ACM Computing Surveys 52, 2019.

MESSAGE PASSING INTERFACE

Envelope

= MPI is a communication protocol, including
API definition.

Different MPI implementations are available,
most notable MPICH and OpenMPI.

Defined on C/Fortran level.

Supercomputers have custom MPI
installations where communication

strategies are optimized. Use it. N
MPI knows about numerical datatypes, ﬁ .

arrays and structs, but no classes.
»
/P :

N
X
§
%

" m
Yoo s e e

|

PARALLELIZATION WITH MPI

= |n practice, almost all MPI programs are #include "mpi.h"
SPMD #include <stdio.h>
= SPMD: Single Program Multiple Data [e S ange, chee sesmgll)
= Communicator: Abstraction of processes I FERR, S50
. MPI_Init(&argc, &argv);
and topology. MPI_COMM_WORLD is the MPI_Comm_rank(MPI_COMM_WORLD, &rank);
default g|0ba| communicator. MPI_Comm_size (MPI_COMM_WORLD, &size);
printf ("Igam,%dyof,%d\n", rank, size);
= Rank: Linear number in Communicator. MPI_Finalize ();

return O;

= Point-to-Point communication: One-to-one ¥
communication

Collective communication: Many-to-many
communication

= Blocking- and non-blocking versions.

COLLABORATIVE BLOCKING COMMUNICATION

Code Process
Process 0 Process 1

#include "mpi.h" (takes timings)

#include <stdio.h>

int main(int argc, char *argv[]) MPI_Type create [7] MPI_Type_create
{ - - -
int rank, size, data;
MPI_Init(&argc, &argv); d
MPI_Comm_rank (MPI_COMM_WORLD , &rank); MPI_Sen —~— MPI_Recv
MPI_Comm_size(MPI_COMM_WORLD, &size); —
if (rank==0) { . —
data=7; ping-
mpi_send(&data, 1, 1, MPI_INT, pong MPI_Send
MPI_COMM_WORLD) ; -
} else { MPI_Recv | MPI_Type_free
mpi_recv(&data, 0, 1, MPI_INT, L
MPI_COMM_WORLD) ;
} // Now both are synched.

if (rank==0) { MPI_Type_free
mpi_recv(&data, 1, 1, MPI_INT,
MPI_COMM_WORLD) ;

} else {
data+=3;
mpi_send (&data, 0, 1, MPI_INT,
MPI_COMM_WORLD) ; A J A J
}

MPI_Finalize();
return O;

http://htor.inf.ethz.ch/research/datatypes/ddtbench/

ASYNCHRONOUS COMMUNICATION

= Asynchronous Communication: Continue computation while transfer is being processed.
= Can lead to ideal latency hiding: No time is lost by transfer.
= Can that work ideally for Data-parallel training?

time
_—

(@] (@] (@) (@) (@)
o (@] (@] (@] (@]
3 3 3 3 3
© © © © ©
= = = = =t
[0} D (0] (0] (0]

lajsuel)
lajsuel|
lajsuel]

lajsuel)

Jajsuel]

ASYNCHRONOUS COMMUNICATION

= Asynchronous Communication: Continue computation while transfer is being processed.
= Can lead to ideal latency hiding: No time is lost by transfer.
= Can that work ideally for Data-parallel training?

time
_—

(@] (@) (@) (@] (@)
o o (o] o o
3 3 3 3 3
© o © © o
= = = = =
[0} D D [0} D

lajsuel)

lajsuel)

Jajsuel]
lajsuel)
lajsuel)

DATA SHARDING

nput - (0) (DEE@E@0ID02([3)[14)[8)e)(7)

split (0) (4)

Split 0

Split 1

Split 2

(D932 (B (NG
Shard 1 Shard 2

DATA-PARALLEL GRADIENT DESCENT

Proc 0

Input

Gradient V «

53

Proc 1

(i@

l
&

< 0

Proc 2

« 0

l
&

Proc 3

V < 0

|

Average . allreduce
L

weight update

L

allreduce

weight update

L

allreduce

weight update

weight update

TUTORIAL TASKS

Parallel Hello World
Parallel computation of =

Dataset sharding.

	Parallelization Strategies
	Parallelization with MPI
	Tutorial Tasks

