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LARGE NETWORKS, LARGE DATASETS

= Compute and memory demand of training increases rapidly
= compute increases exponentially, 3.4 months doubling time since 2012
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Amodei et al., 2019 (Source: https://openai.com/blog/ai-and-compute/)
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LARGE NETWORKS, LARGE DATASETS

= Compute and memory demand of training increases rapidly
= compute increases exponentially, 3.4 months doubling time since 2012
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LARGE NETWORKS, LARGE DATASETS

= Networks: large models, many layers, many weights

= ResNet, DenseNet, EfficientNet, Transformer
= hundreds of layers, hundred millions of parameters or more

Forward pass: activations f(X; W)
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Backward pass: gradients

Canziani et al., 2017
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LARGE NETWORKS, LARGE DATASETS

= Networks: large models, many layers, many weights
= ResNet, DenseNet, EfficientNet, Transformer
= hundreds of layers, millions of parameters (GPT-3: 175 billion)
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LARGE NETWORKS, LARGE DATASETS

= GPT-3: 175 billions weights, ~ 350 GB, does not fit on single GPU
= ResNet, DenseNet, EfficientNet < 100 million weights, < 10 GB, may fit on single GPU

= depending on chosen resolution of input X and batch size |B|!
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LARGE NETWORKS, LARGE DATASETS

= GPT-3: 175 billions weights, ~ 350 GB, does not fit on single GPU
= ResNet, DenseNet, EfficientNet < 100 million weights, < 10 GB, may fit on single GPU

= depending on chosen resolution of input X and batch size |B|!

Forward pass: activations f(X W)
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Backward pass: gradients

Awan et al., 2020
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DISTRIBUTED TRAINING

= Use the computational power and memory capacity of multiple nodes of a large machine
= Requires taking care of internode communication
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DISTRIBUTED TRAINING

= Use the computational power and memory capacity of multiple nodes of a large machine
= Requires taking care of internode communication

= MPI p Socket:
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DISTRIBUTED TRAINING SCHEMES

= Depending on whether full model fits on a single GPU, different schemes

= data parallelism: split only data across GPUs, model cloned on each GPU

= model parallelism: split network across GPUs

= pipeline parallelism: split stages/layers across GPUs
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LARGE NETWORKS, LARGE DATASETS

= Model does not fit on single GPU: no training without parallelization possible at all
= AlexNet in 2012; GPT-2, GPT-3
= Model fits on single GPU: why distributed training?
= multiple GPUs can drastically speed up training phase

— e.g. ImageNet training: from days to hours or minutes

-
>

=

-
>

v

v

£

£

Loss

Loss

Loss

Worker 1

Worker 2

Worker K

Vo9
q>@@ =

Laskin et al., 2020

=



LARGE NETWORKS, LARGE DATASETS

= ImageNet distributed training: from days, to hours, to minutes

Batch Processor DL Time Accuracy

Size Library
He et al. [1] 256 Tesla P100 x 8 Caffe 29 hours 753 %
Goyal et al. [2] 8,192 Tesla P100 x 256 Caffe2 1 hour 76.3 %
Smith et al. [3] 8,192 — 16,384 full TPU Pod TensorFlow 30 mins 76.1 %
Akiba et al. [4] 32,768 Tesla P100 x 1,024 Chainer 15 mins 74.9 %
Jia et al. [5] 65,536 Tesla P40 x 2,048 TensorFlow 6.6 mins 75.8 %
Ying et al. [6] 65,536 TPU v3 x 1,024 TensorFlow 1.8 mins 75.2 %
Mikami et al. [7] 55,296 Tesla V100 x 3,456 NNL 2.0 mins 7529 %
This work 81,920 Tesla V100 x 2,048 MXNet 1.2 mins 75.08 %

ResNet-50 training on ImageNet
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DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: simple approach for efficient distributed model training

= whole model has to fit on one GPU: depends on batch size!
= gplit whole dataset across multiple workers
= speeds up model training — when scaling works out

= Faster training, shorter experiment cycle — more opportunities to test new ideas and models
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DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: simple approach for efficient distributed model training

= whole model has to fit on one GPU: depends on batch size!
= gplit whole dataset across multiple workers
= speeds up model training — when scaling works out

= Faster training, shorter experiment cycle — more opportunities to test new ideas and models
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DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: simple approach for efficient distributed model training

= same model is cloned across K workers
= each model clone trains on its dedicated subset of total available data
= synchronous or asynchronous optimization to keep weights across clones in sync
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DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: simple approch for efficient distributed model training
= can be understood as training a model using a larger mini-batch size |B|
- B=ByU...UBk,BNB; =0, Vi,jc K workers

— |B| = K - | Bret|, Where |Bg| = nis original, reference batch size for a single worker
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REMINDER: MINI-BATCH SGD

= Mini-batch SGD
= perform an update step using loss gradient Vw.Lg over a mini-batch of size |B|=n< N
1
Vwls = Vwﬁ Z Li
X;eB

= update step: W1 <+ W — nVwLs
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DEEP LEARNING WITH DATA PARALLELISM

= Effective larger mini-batch 2 over K workers

= perform an update step using loss gradient Vw Ly over a larger effective mini-batch
IB| = K- |Beil, |IBl=n< N

K
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J

j= X,-ij XieB

= update step: Wiy «+ Wi — nVwLsy
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DEEP LEARNING WITH DATA PARALLELISM

= Training a model using a larger mini-batch size |5|

= |%B| = K - | Bet|, Where | Byl is original, reference batch size for a single worker

= Update step: W;1 <+ W; — nVwLs

= Reminder: Changes optimization trajectory and weight dynamics compared to smaller mini-batch
training
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DEEP LEARNING WITH DATA PARALLELISM

= Training a model using a larger mini-batch size |5|
= |%B| = K - | Bet|, Where | Byl is original, reference batch size for a single worker
= Update step: W;1 <+ W; — nVwLs
= Reminder: Changes optimization trajectory and weight dynamics compared to smaller mini-batch
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DEEP LEARNING WITH DATA PARALLELISM

= Data parallel distributed training requires:

= proper data feeding for each worker

= setting up workers, one per each GPU (model clones)

= sync of model clone parameters (weights) across workers: update step — communication load
— after each forward/backward pass on workers’ mini-batches
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DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: proper data feeding for each worker
= important not to let GPUs “starve” while training

Load and Load and Load and

prepare o prepare . prepare
batch batch batch

Training Training Training

operations operations operations

Figure: Mendonca, Sarmiento, ETH CSCS, 2020



DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: proper data feeding for each worker
= important not to let GPUs “starve” while training
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DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: proper data feeding for each worker

= data pipelines: handled either by

— internal TensorFlow (see tutorial) or PyTorch routines
— specialized libraries, e.g. NVIDIA DALI

# Ezample for TensorFlow dataset API
import tensorflow as tf

[...1]

# Instantiate a dataset object

dataset = tf.data.Dataset.from_tensor_slices(files)
[...1]

# Apply input preprocessing when required
dataset = dataset.map(decode, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.map(preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)

# Randomize
dataset = dataset.shuffle(buffer_size)

# Create a batch and prepare nexzt ones

dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

[oool



DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: proper data feeding for each worker

= important not to let GPUs “starve” while training
= data handling via data pipelines routines
= use efficient data containers: HDF5, LMDB, TFRecords, ...

Load and Load and Load and

CPU prepare prepare prepare
batch batch batch

Training Training Training

operations operations operations




DEEP LEARNING WITH DATA PARALLELISM

= Data parallel distributed training requires:

= proper data feeding for each worker: data pipelines, containers

= setting up workers, one per each GPU (model clones)

= sync of model clone weights across workers: update step W;.1 + W; — nVwLsys
— after each forward/backward pass on workers’ mini-batches
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DEEP LEARNING WITH DATA PARALLELISM

= Data parallel distributed training requires:

= proper data feeding for each worker: data pipelines, containers

= sync of model clone weights across workers: handle communication between nodes

— for large K and large model size — high bandwidth required! Enter stage InfiniBand — HPC
— efficient internode communication while training on GPUs! Enter stage Horovod library
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DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

= Horovod: making data parallel distributed training easy
= efficient worker communication during distributed training
— additional mechanisms like Tensor Fusion
= works seamlessly with job managers (SLURM)
= very easy code migration from a working single-node version

Training Process
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Model Gradients Gty
Data Store Training Process
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% Model Gradients Gradients
Training Process
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Sergeev, A., Del Balso, M., 2017




DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

= Supports major libraries: TensorFlow, PyTorch, Apache MXNet
= Worker communication during distributed training
= NCCL: highly optimized GPU-GPU communication collective routines
— same as in MPI: Allreduce, Allgather, Broadcast
MPI: for CPU-CPU communication
Simple scheme: 1 worker — 1 MPI Process
Process nomenclature as in MPI: rank, world_size
for local GPU assignment: local_rank
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DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

= Horovod: making data parallel distributed training easy
= fun fact: “horovod” is a word in Russian, meaning “circle dance” (Deutsch: Reigentanz!)




DISTRIBUTED TRAINING WITH HOROVOD

= Training model with a large effective mini-batch size:

m B = UigK B,', B,'ﬂBj = Q), VI,] S K; |%| =K- |Bref|
= B, is reference batch size for single worker
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DISTRIBUTED TRAINING WITH HOROVOD

= Training loop: K workers, one per each GPU

init: sync weights of all K workers
for e in epochs:
shard data subsets D_j to workers j
for B in batches:
each worker j gets its own B_j (local compute)
each worker j computes its own dL_j (local compute)
Allreduce: compute dL_B, average gradients (communication)
Update using dL_B for all K workers (local compute)
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DISTRIBUTED TRAINING WITH HOROVOD

= User friendly code migration, simple wrapping of existing code
= major libraries supported: TensorFlow, PyTorch, MXNet, ...

import tensorflow as tf import torch

import horovod.tensorflow.keras as hvd import horovod.torch as hvd

# Intitialize Horowod # Initialize Horowod

hvd.init () hvd.init ()

Loood Coool

# Wrap optimizer in Horowvod’s # Wrap optimizer in Horovod’s
DistributedOptimizer DistributedOptimizer

opt = hvd.DistributedOptimizer (opt) opt = hvd.DistributedOptimizer (opt)

Loooll [oood



DISTRIBUTED TRAINING WITH HOROVOD

= Handled by dataset pipeline (Horovod independent): data sharding
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Forward pass: activations f(X; W)
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DISTRIBUTED TRAINING WITH HOROVOD

= Handled by dataset pipeline (Horovod independent): data sharding

# Exzample for TensorFlow dataset API
import tensorflow as tf
import horovod.tensorflow.keras as hvd

[...]
hvd.init ()

# Instantiate a dataset object
dataset = tf.data.Dataset.from_tensor_slices(files)

[...]

# Get a disjoint data subset for the worker
dataset = dataset.shard(hvd.size(), hvd.rank())

Cooo]

# Randomize
dataset = dataset.shuffle(buffer_size)

# Create worker’s mini-batch and prepare next ones
dataset dataset.batch(batch_size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

[...]



DISTRIBUTED TRAINING WITH HOROVOD

= Create a SLURM job script for the code wrapped with Horovod
= K Horovod workers correspond to K tasks in total, 1 MPI process each
= K = nodes - tasks-per-node = nodes - gpus-per-node

#!/bin/bash -z

#SBATCH --account=training2004
#SBATCH --nodes=2

#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=20
#SBATCH --time=00:20:00
#SBATCH --gres=gpu:4

#SBATCH --partition=booster

srun python train_model.py
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DISTRIBUTED TRAINING WITH HOROVOD

Basics to parallelize your model

= Use Horovod to wrap existing model code
= Use data containers and pipelines to provide data to workers efficiently
= Create a SLURM job script to submit the wrapped code




DATA PARALLEL DISTRIBUTED TRAINING WITH
HOROVOD

Summary

= Opportunity to efficiently speed up training on large data
= Requires K GPUs, the larger K, the better
= Training with a larger effective batch size |B| = K|Bie|

= Data pipelines, high bandwidth network (InfiniBand) and Horovod pave the way
= Additional measures to stabilize training — upcoming lectures
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