
DAY 2: TOWARDS SCALABLE DEEP LEARNING
Distributed Training and Data Parallelism with
Horovod
2021-02-02 Jenia Jitsev Cross Sectional Team Deep Learning, Helmholtz AI @ JSC

LARGE NETWORKS, LARGE DATASETS

Compute and memory demand of training increases rapidly
compute increases exponentially, 3.4 months doubling time since 2012

Amodei et al., 2019 (Source: https://openai.com/blog/ai-and-compute/)

LARGE NETWORKS, LARGE DATASETS
Compute and memory demand of training increases rapidly

compute increases exponentially, 3.4 months doubling time since 2012

LARGE NETWORKS, LARGE DATASETS

Networks: large models, many layers, many weights
ResNet, DenseNet, EfficientNet, Transformer
hundreds of layers, hundred millions of parameters or more

Canziani et al., 2017

LARGE NETWORKS, LARGE DATASETS

Networks: large models, many layers, many weights
ResNet, DenseNet, EfficientNet, Transformer
hundreds of layers, millions of parameters (GPT-3: 175 billion)

LARGE NETWORKS, LARGE DATASETS

GPT-3: 175 billions weights, ≈ 350 GB, does not fit on single GPU
ResNet, DenseNet, EfficientNet < 100 million weights, . 10 GB, may fit on single GPU

depending on chosen resolution of input X and batch size |B|!

LARGE NETWORKS, LARGE DATASETS

GPT-3: 175 billions weights, ≈ 350 GB, does not fit on single GPU
ResNet, DenseNet, EfficientNet < 100 million weights, . 10 GB, may fit on single GPU

depending on chosen resolution of input X and batch size |B|!

Awan et al., 2020

DISTRIBUTED TRAINING

Use the computational power and memory capacity of multiple nodes of a large machine
Requires taking care of internode communication

Ben-Nun & Hoefler, 2018

DISTRIBUTED TRAINING

Use the computational power and memory capacity of multiple nodes of a large machine
Requires taking care of internode communication

Ben-Nun & Hoefler, 2018

DISTRIBUTED TRAINING SCHEMES

Depending on whether full model fits on a single GPU, different schemes
data parallelism: split only data across GPUs, model cloned on each GPU
model parallelism: split network across GPUs
pipeline parallelism: split stages/layers across GPUs

Worker 1 Worker 2 Worker K

Loss

Loss

Loss

Loss

Loss

Laskin et al., 2020

LARGE NETWORKS, LARGE DATASETS

Model does not fit on single GPU: no training without parallelization possible at all
AlexNet in 2012; GPT-2, GPT-3

Model fits on single GPU: why distributed training?
multiple GPUs can drastically speed up training phase

– e.g. ImageNet training: from days to hours or minutes

Worker 1 Worker 2 Worker K

Loss

Loss

Loss

Loss

Loss

Laskin et al., 2020

LARGE NETWORKS, LARGE DATASETS

ImageNet distributed training: from days, to hours, to minutes

Yamazoto et al., 2019; Ying, 2018

DEEP LEARNING WITH DATA PARALLELISM

Data parallelism: simple approach for efficient distributed model training
whole model has to fit on one GPU: depends on batch size!
split whole dataset across multiple workers
speeds up model training – when scaling works out

Faster training, shorter experiment cycle – more opportunities to test new ideas and models

Ying, 2018

DEEP LEARNING WITH DATA PARALLELISM

Data parallelism: simple approach for efficient distributed model training
whole model has to fit on one GPU: depends on batch size!
split whole dataset across multiple workers
speeds up model training – when scaling works out

Faster training, shorter experiment cycle – more opportunities to test new ideas and models

Cherti et al., 2020

DEEP LEARNING WITH DATA PARALLELISM

Data parallelism: simple approach for efficient distributed model training
same model is cloned across K workers
each model clone trains on its dedicated subset of total available data
synchronous or asynchronous optimization to keep weights across clones in sync

DEEP LEARNING WITH DATA PARALLELISM

Data parallelism: simple approch for efficient distributed model training
can be understood as training a model using a larger mini-batch size |B|

– B = B1 ∪ . . . ∪ BK , Bi ∩ Bj = ∅, ∀i, j ∈ K workers

– |B| = K · |Bref|, where |Bref| = n is original, reference batch size for a single worker

REMINDER: MINI-BATCH SGD

Mini-batch SGD
perform an update step using loss gradient ∇WLB over a mini-batch of size |B| = n� N

∇WLB = ∇W
1
n

∑
Xi∈B

Li

update step: Wt+1 ← Wt − η∇WLB

DEEP LEARNING WITH DATA PARALLELISM

Effective larger mini-batch B over K workers
perform an update step using loss gradient ∇WLB over a larger effective mini-batch
|B| = K · |Bref|, |B| = n� N

∇WLB = ∇W
1
K

K∑
j=1

1
n

∑
Xi∈Bj

Li = ∇W
1

nK

∑
Xi∈B

Li

update step: Wt+1 ← Wt − η∇WLB

DEEP LEARNING WITH DATA PARALLELISM

Training a model using a larger mini-batch size |B|
|B| = K · |Bref|, where |Bref| is original, reference batch size for a single worker
Update step: Wt+1 ← Wt − η∇WLB

Reminder: Changes optimization trajectory and weight dynamics compared to smaller mini-batch
training

DEEP LEARNING WITH DATA PARALLELISM

Training a model using a larger mini-batch size |B|
|B| = K · |Bref|, where |Bref| is original, reference batch size for a single worker
Update step: Wt+1 ← Wt − η∇WLB

Reminder: Changes optimization trajectory and weight dynamics compared to smaller mini-batch
training

Goyal et al., 2017

DEEP LEARNING WITH DATA PARALLELISM

Data parallel distributed training requires:
proper data feeding for each worker
setting up workers, one per each GPU (model clones)
sync of model clone parameters (weights) across workers: update step – communication load

– after each forward/backward pass on workers’ mini-batches

– ∇WLB =
1
K

K∑
j=1︸ ︷︷ ︸

across K workers

∇W
1
n

∑
Xi∈Bj

Li

︸ ︷︷ ︸
on worker j

DEEP LEARNING WITH DATA PARALLELISM

Data parallelism: proper data feeding for each worker
important not to let GPUs “starve” while training

Figure: Mendonça, Sarmiento, ETH CSCS, 2020

DEEP LEARNING WITH DATA PARALLELISM

Data parallelism: proper data feeding for each worker
important not to let GPUs “starve” while training

DEEP LEARNING WITH DATA PARALLELISM

Data parallelism: proper data feeding for each worker
data pipelines: handled either by

– internal TensorFlow (see tutorial) or PyTorch routines
– specialized libraries, e.g. NVIDIA DALI

Example for TensorFlow dataset API
import tensorflow as tf

[...]

Instantiate a dataset object
dataset = tf.data.Dataset.from_tensor_slices(files)

[...]

Apply input preprocessing when required
dataset = dataset.map(decode , num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.map(preprocess , num_parallel_calls=tf.data.experimental.AUTOTUNE)

Randomize
dataset = dataset.shuffle(buffer_size)

Create a batch and prepare next ones
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

[...]

DEEP LEARNING WITH DATA PARALLELISM

Data parallelism: proper data feeding for each worker
important not to let GPUs “starve” while training
data handling via data pipelines routines
use efficient data containers: HDF5, LMDB, TFRecords, . . .

DEEP LEARNING WITH DATA PARALLELISM

Data parallel distributed training requires:
proper data feeding for each worker: data pipelines, containers
setting up workers, one per each GPU (model clones)
sync of model clone weights across workers: update step Wt+1 ← Wt − η∇WLB

– after each forward/backward pass on workers’ mini-batches

– ∇WLB =
1
K

K∑
j=1

∇W
1
n

∑
Xi∈Bj

Li

︸ ︷︷ ︸
on worker j

DEEP LEARNING WITH DATA PARALLELISM

Data parallel distributed training requires:
proper data feeding for each worker: data pipelines, containers
sync of model clone weights across workers: handle communication between nodes

– for large K and large model size – high bandwidth required! Enter stage InfiniBand – HPC
– efficient internode communication while training on GPUs! Enter stage Horovod library

DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

Horovod: making data parallel distributed training easy
efficient worker communication during distributed training

– additional mechanisms like Tensor Fusion
works seamlessly with job managers (SLURM)
very easy code migration from a working single-node version

Sergeev, A., Del Balso, M., 2017

DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

Supports major libraries: TensorFlow, PyTorch, Apache MXNet
Worker communication during distributed training

NCCL: highly optimized GPU-GPU communication collective routines
– same as in MPI: Allreduce, Allgather, Broadcast

MPI: for CPU-CPU communication
Simple scheme: 1 worker – 1 MPI Process
Process nomenclature as in MPI: rank, world_size
for local GPU assignment: local_rank

DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

Horovod: making data parallel distributed training easy
fun fact: “horovod” is a word in Russian, meaning “circle dance” (Deutsch: Reigentanz!)

DISTRIBUTED TRAINING WITH HOROVOD

Training model with a large effective mini-batch size:
B =

⋃
i≤K Bi , Bi ∩ Bj = ∅, ∀i, j ∈ K ; |B| = K · |Bref|

Bref is reference batch size for single worker

DISTRIBUTED TRAINING WITH HOROVOD

Training loop: K workers, one per each GPU

init: sync weights of all K workers
for e in epochs:

shard data subsets D_j to workers j
for B in batches:

each worker j gets its own B_j (local compute)
each worker j computes its own dL_j (local compute)
Allreduce: compute dL_B , average gradients (communication)
Update using dL_B for all K workers (local compute)

DISTRIBUTED TRAINING WITH HOROVOD

User friendly code migration, simple wrapping of existing code
major libraries supported: TensorFlow, PyTorch, MXNet, . . .

import tensorflow as tf
import horovod.tensorflow.keras as hvd

Initialize Horovod
hvd.init()

[...]

Wrap optimizer in Horovod ’s
DistributedOptimizer

opt = hvd.DistributedOptimizer(opt)

[...]

import torch
import horovod.torch as hvd

Initialize Horovod
hvd.init()

[...]

Wrap optimizer in Horovod ’s
DistributedOptimizer

opt = hvd.DistributedOptimizer(opt)

[...]

DISTRIBUTED TRAINING WITH HOROVOD

Handled by dataset pipeline (Horovod independent): data sharding

DISTRIBUTED TRAINING WITH HOROVOD

Handled by dataset pipeline (Horovod independent): data sharding

Example for TensorFlow dataset API
import tensorflow as tf
import horovod.tensorflow.keras as hvd

[...]

hvd.init()

Instantiate a dataset object
dataset = tf.data.Dataset.from_tensor_slices(files)

[...]

Get a disjoint data subset for the worker
dataset = dataset.shard(hvd.size(), hvd.rank())

[...]

Randomize
dataset = dataset.shuffle(buffer_size)

Create worker ’s mini -batch and prepare next ones
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

[...]

DISTRIBUTED TRAINING WITH HOROVOD
Create a SLURM job script for the code wrapped with Horovod

K Horovod workers correspond to K tasks in total, 1 MPI process each
K = nodes · tasks-per-node = nodes · gpus-per-node

#!/bin/bash -x

#SBATCH --account=training2004
#SBATCH --nodes =2
#SBATCH --ntasks -per -node=4
#SBATCH --cpus -per -task =20
#SBATCH --time =00:20:00
#SBATCH --gres=gpu:4
#SBATCH --partition=booster

srun python train_model.py

DISTRIBUTED TRAINING WITH HOROVOD

Basics to parallelize your model

Use Horovod to wrap existing model code
Use data containers and pipelines to provide data to workers efficiently
Create a SLURM job script to submit the wrapped code

DATA PARALLEL DISTRIBUTED TRAINING WITH
HOROVOD

Summary

Opportunity to efficiently speed up training on large data
Requires K GPUs, the larger K , the better
Training with a larger effective batch size |B| = K |Bref|
Data pipelines, high bandwidth network (InfiniBand) and Horovod pave the way
Additional measures to stabilize training – upcoming lectures

