

DAY 2: TOWARDS SCALABLE DEEP LEARNING Distributed Training and Data Parallelism with Horovod

2021-02-02 | Jenia Jitsev | Cross Sectional Team Deep Learning, Helmholtz Al @ JSC

- Compute and memory demand of training increases rapidly
 - compute increases exponentially, 3.4 months doubling time since 2012

- Compute and memory demand of training increases rapidly
 - compute increases exponentially, 3.4 months doubling time since 2012

- Networks: large models, many layers, many weights
 - ResNet, DenseNet, EfficientNet, Transformer
 - hundreds of layers, hundred millions of parameters or more

- Networks: large models, many layers, many weights
 - ResNet, DenseNet, EfficientNet, Transformer
 - hundreds of layers, millions of parameters (GPT-3: 175 billion)

- GPT-3: 175 billions weights, \approx 350 GB, does not fit on single GPU
- ullet ResNet, DenseNet, EfficientNet < 100 million weights, \lesssim 10 GB, may fit on single GPU
 - depending on chosen resolution of input X and batch size |B|!

- GPT-3: 175 billions weights, ≈ 350 GB, does not fit on single GPU
- ResNet, DenseNet, EfficientNet < 100 million weights, ≤ 10 GB, may fit on single GPU</p>
 - depending on chosen resolution of input X and batch size |B|!

DISTRIBUTED TRAINING

- Use the computational power and memory capacity of multiple nodes of a large machine
- Requires taking care of internode communication

DISTRIBUTED TRAINING

- Use the computational power and memory capacity of multiple nodes of a large machine
- Requires taking care of internode communication

DISTRIBUTED TRAINING SCHEMES

- Depending on whether full model fits on a single GPU, different schemes
 - data parallelism: split only data across GPUs, model cloned on each GPU
 - model parallelism: split network across GPUs
 - pipeline parallelism: split stages/layers across GPUs

- Model does not fit on single GPU: no training without parallelization possible at all
 - AlexNet in 2012; GPT-2, GPT-3
- Model fits on single GPU: why distributed training?
 - multiple GPUs can drastically speed up training phase
 - e.g. ImageNet training: from days to hours or minutes

ImageNet distributed training: from days, to hours, to minutes

	Batch	Processor	DL	Time	Accuracy
	Size		Library		
He et al. [1]	256	Tesla P100 × 8	Caffe	29 hours	75.3 %
Goyal et al. [2]	8,192	Tesla P100 \times 256	Caffe2	1 hour	76.3 %
Smith et al. [3]	$8,192 \rightarrow 16,384$	full TPU Pod	TensorFlow	30 mins	76.1 %
Akiba et al. [4]	32,768	Tesla P100 \times 1,024	Chainer	15 mins	74.9 %
Jia et al. [5]	65,536	Tesla P40 × 2,048	TensorFlow	6.6 mins	75.8 %
Ying et al. [6]	65,536	TPU v3 \times 1,024	TensorFlow	1.8 mins	75.2 %
Mikami et al. [7]	55,296	Tesla V100 × 3,456	NNL	2.0 mins	75.29 %
This work	81,920	Tesla V100 \times 2,048	MXNet	1.2 mins	75.08%

- Data parallelism: simple approach for efficient distributed model training
 - whole model has to fit on one GPU: depends on batch size!
 - split whole dataset across multiple workers
 - speeds up model training when scaling works out
- Faster training, shorter experiment cycle more opportunities to test new ideas and models

- Data parallelism: simple approach for efficient distributed model training
 - whole model has to fit on one GPU: depends on batch size!
 - split whole dataset across multiple workers
 - speeds up model training when scaling works out
- Faster training, shorter experiment cycle more opportunities to test new ideas and models

- Data parallelism: simple approach for efficient distributed model training
 - same model is cloned across K workers
 - each model clone trains on its dedicated subset of total available data
 - synchronous or asynchronous optimization to keep weights across clones in sync

- Data parallelism: simple approach for efficient distributed model training
 - ullet can be understood as training a model using a larger mini-batch size $|\mathfrak{B}|$
 - $\mathfrak{B} = B_1 \cup \ldots \cup B_K$, $B_i \cap B_j = \emptyset$, $\forall i, j \in K$ workers
 - $|\mathfrak{B}| = K \cdot |B_{ref}|$, where $|B_{ref}| = n$ is original, reference batch size for a single worker

REMINDER: MINI-BATCH SGD

- Mini-batch SGD
 - perform an update step using loss gradient $\nabla_{\mathbf{W}} \mathcal{L}_B$ over a **mini-batch** of size $|B| = n \ll N$

$$\nabla_{\mathbf{W}} \mathcal{L}_{B} = \nabla_{\mathbf{W}} \frac{1}{n} \sum_{X_{i} \in B} \mathcal{L}_{i}$$

■ update step: $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t - \eta \nabla_{\mathbf{W}} \mathcal{L}_B$

- Effective larger mini-batch 𝔞 over K workers
 - perform an update step using loss gradient $\nabla_{\mathbf{W}} \mathcal{L}_{\mathfrak{B}}$ over a larger **effective** mini-batch $|\mathfrak{B}| = K \cdot |B_{\text{ref}}|, \ |B| = n \ll N$

$$\nabla_{\mathbf{W}} \mathcal{L}_{\mathfrak{B}} = \nabla_{\mathbf{W}} \frac{1}{K} \sum_{j=1}^{K} \frac{1}{n} \sum_{X_i \in \mathcal{B}_j} \mathcal{L}_i = \nabla_{\mathbf{W}} \frac{1}{nK} \sum_{X_i \in \mathfrak{B}} \mathcal{L}_i$$

■ update step: $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t - \eta \nabla_{\mathbf{W}} \mathcal{L}_{\mathfrak{B}}$

- Training a model using a larger mini-batch size |B|
 - $|\mathfrak{B}| = K \cdot |B_{ref}|$, where $|B_{ref}|$ is original, reference batch size for a single worker
 - Update step: $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t \eta \nabla_{\mathbf{W}} \mathcal{L}_{\mathfrak{B}}$
 - Reminder: Changes optimization trajectory and weight dynamics compared to smaller mini-batch training

- Training a model using a larger mini-batch size |B|
 - $|\mathfrak{B}| = K \cdot |B_{ref}|$, where $|B_{ref}|$ is original, reference batch size for a single worker
 - Update step: $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t \eta \nabla_{\mathbf{W}} \mathcal{L}_{\mathfrak{B}}$
 - Reminder: Changes optimization trajectory and weight dynamics compared to smaller mini-batch training

- Data parallel distributed training requires:
 - proper data feeding for each worker
 - setting up workers, one per each GPU (model clones)
 - sync of model clone parameters (weights) across workers: update step communication load
 - after each forward/backward pass on workers' mini-batches

$$- \nabla_{\mathbf{W}} \mathcal{L}_{\mathfrak{B}} = \underbrace{\frac{1}{K} \sum_{j=1}^{K}}_{\text{across } K \text{ workers}} \underbrace{\nabla_{\mathbf{W}} \frac{1}{n} \sum_{X_{j} \in B_{j}} \mathcal{L}_{l}}_{\text{on worker } j}$$

- Data parallelism: proper data feeding for each worker
 - important not to let GPUs "starve" while training

- Data parallelism: proper data feeding for each worker
 - important not to let GPUs "starve" while training

- Data parallelism: proper data feeding for each worker
 - data pipelines: handled either by
 - internal TensorFlow (see tutorial) or PyTorch routines
 - specialized libraries, e.g. NVIDIA DALI

```
# Example for TensorFlow dataset API
import tensorflow as tf
[...]
# Instantiate a dataset object
dataset = tf.data.Dataset.from_tensor_slices(files)
[...]
# Apply input preprocessing when required
dataset = dataset.map(decode, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.map(preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
# Randomize
dataset = dataset.shuffle(buffer size)
# Create a batch and prepare next ones
dataset = dataset.batch(batch size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
Γ...1
```

- Data parallelism: proper data feeding for each worker
 - important not to let GPUs "starve" while training
 - data handling via data pipelines routines
 - use efficient data containers: HDF5, LMDB, TFRecords, . . .

- Data parallel distributed training requires:
 - proper data feeding for each worker: data pipelines, containers
 - setting up workers, one per each GPU (model clones)
 - sync of model clone weights across workers: update step $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t \eta \nabla_{\mathbf{W}} \mathcal{L}_{\mathfrak{B}}$
 - after each forward/backward pass on workers' mini-batches

- Data parallel distributed training requires:
 - proper data feeding for each worker: data pipelines, containers
 - sync of model clone weights across workers: handle communication between nodes
 - for large K and large model size high bandwidth required! Enter stage InfiniBand HPC
 - efficient internode communication while training on GPUs! Enter stage Horovod library

DEEP LEARNING WITH DATA PARALLELISM: HOROVOD

- Horovod: making data parallel distributed training easy
 - efficient worker communication during distributed training
 - additional mechanisms like Tensor Fusion
 - works seamlessly with job managers (SLURM)
 - very easy code migration from a working single-node version

DEEP LEARNING WITH DATA PARALLELISM: HOROVOD

- Supports major libraries: TensorFlow, PyTorch, Apache MXNet
- Worker communication during distributed training
 - NCCL: highly optimized GPU-GPU communication collective routines
 - same as in MPI: Allreduce, Allgather, Broadcast
 - MPI: for CPU-CPU communication
 - Simple scheme: 1 worker 1 MPI Process
 - Process nomenclature as in MPI: rank, world_size
 - for local GPU assignment: local_rank

DEEP LEARNING WITH DATA PARALLELISM: HOROVOD

- Horovod: making data parallel distributed training easy
 - fun fact: "horovod" is a word in Russian, meaning "circle dance" (Deutsch: Reigentanz!)

- Training model with a large effective mini-batch size:
 - $\blacksquare \mathfrak{B} = \bigcup_{i < K} B_i, B_i \cap B_j = \emptyset, \ \forall i, j \in K; \ |\mathfrak{B}| = K \cdot |B_{\mathsf{ref}}|$
 - B_{ref} is reference batch size for single worker

■ Training loop: *K* workers, one per each GPU

```
init: sync weights of all K workers
for e in epochs:
   shard data subsets D_j to workers j
   for B in batches:
   each worker j gets its own B_j (local compute)
   each worker j computes its own dL_j (local compute)
   Allreduce: compute dL_B, average gradients (communication)
   Update using dL_B for all K workers (local compute)
```


- User friendly code migration, simple wrapping of existing code
 - major libraries supported: TensorFlow, PyTorch, MXNet, ...

```
import tensorflow as tf
import horovod.tensorflow.keras as hvd

# Initialize Horovod
hvd.init()

[...]

# Wrap optimizer in Horovod's
    DistributedOptimizer
opt = hvd.DistributedOptimizer(opt)

[...]
```

```
import torch
import horovod.torch as hvd

# Initialize Horovod
hvd.init()

[...]

# Wrap optimizer in Horovod's
    DistributedOptimizer
opt = hvd.DistributedOptimizer(opt)

[...]
```

Handled by dataset pipeline (Horovod independent): data sharding

Handled by dataset pipeline (Horovod independent): data sharding

```
# Example for TensorFlow dataset API
import tensorflow as tf
import horovod.tensorflow.keras as hvd
[...]
hvd.init()
# Instantiate a dataset object
dataset = tf.data.Dataset.from tensor slices(files)
[...]
# Get a disjoint data subset for the worker
dataset = dataset.shard(hvd.size(), hvd.rank())
[...]
# Randomize
dataset = dataset.shuffle(buffer size)
# Create worker's mini-batch and prepare next ones
dataset = dataset.batch(batch size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
[...]
```

- Create a SLURM job script for the code wrapped with Horovod
 - K Horovod workers correspond to K tasks in total, 1 MPI process each
 - $K = \text{nodes} \cdot \text{tasks-per-node} = \text{nodes} \cdot \text{gpus-per-node}$

```
#!/bin/bash -x

#SBATCH --account=training2004

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=4

#SBATCH --cpus-per-task=20

#SBATCH --time=00:20:00

#SBATCH --gres=gpu:4

#SBATCH --partition=booster

srun python train_model.py
```


Basics to parallelize your model

- Use Horovod to wrap existing model code
- Use data containers and pipelines to provide data to workers efficiently
- Create a SLURM job script to submit the wrapped code

DATA PARALLEL DISTRIBUTED TRAINING WITH HOROVOD

Summary

- Opportunity to efficiently speed up training on large data
- Requires K GPUs, the larger K, the better
- Training with a larger effective batch size $|\mathfrak{B}| = K|B_{ref}|$
- Data pipelines, high bandwidth network (InfiniBand) and Horovod pave the way
- Additional measures to stabilize training upcoming lectures

