DAY 2: TOWARDS SCALABLE DEEP LEARNING
Distributed Training and Data Parallelism with
Horovod

2021-02-02 | Jenia Jitsev | Cross Sectional Team Deep Learning, Helmholtz Al @ JSC

IJ JULICH

Forschungszentru

LARGE NETWORKS, LARGE DATASETS

= Compute and memory demand of training increases rapidly
= compute increases exponentially, 3.4 months doubling time since 2012

10,000

1,000

100

10

1

1

01

Petaflop/s-day (Training)

001

0001

00001

Amodei et al., 2019 (Source: https://openai.com/blog/ai-and-compute/)

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

o AlphaGo Zero
e AlphaZero

o Neural Machine Translation
o Neural Architecture Search

«Xception ® T17 Dota v1

VGG e DeepSpeech2
©SeG25eq eResNets
©GoogleNet

¢ Visualizing and Understanding Conv Nets

*DQAN

2014 2015 2016 2017 2018 2019
Year

LARGE NETWORKS, LARGE DATASETS

= Compute and memory demand of training increases rapidly
= compute increases exponentially, 3.4 months doubling time since 2012

Two Distinct Eras of Compute Usage in Training AT Systems
Petaflop/s-day
Lo+
AlphaGoZero

le+2 Neural Machine
Translation |

& ¢ T17 Dota 1v1

vee
© ResNets

AlexNet

3.4-month doubling

Deep Belief Nets and
layer-wise pretraining

DN
le-6 .
TD-Gammon v2.1 _ b
! . BILSTM for Speech
LeNet-5
NETtalk “RNN for Speech
ALVINN
1e-10
le-12 2-year doubling (Moo
le-14 Perceptron « First Era Modern Era >

1960 1970 1980 1990 2000 2010 2020

LARGE NETWORKS, LARGE DATASETS

= Networks: large models, many layers, many weights

= ResNet, DenseNet, EfficientNet, Transformer
= hundreds of layers, hundred millions of parameters or more

Forward pass: activations f(X; W)

>
— — — — —
o o o
o o o
w, |® Ow @
X|—s | i|l—s| || i |Y
o o o
o o o
o o o
-), U U
< IW;

Backward pass: gradients

Canziani et al., 2017

Inception-v4
% € ° Xception
Incepti .
DenseNeﬁér y ResNet-101 ResNet-152
DepseNet-16 ResNet-50 " VGG-
75 © “DenseNet-121 VGG-16 Ll
ResNet-34
- blIeNet v1
£ 70 4 ResNet-18
§ GoogLeNet
5
S 65 P fd MoblleNet
&
3 BN-NIN
= ShuffleNet
60 5M 35M 65M 95M 125M 155M
SqueezeNet
BN-AlexNet
55 AlexNet
50
0 10 20 30 40 50

Operations [G-Ops]

LARGE NETWORKS, LARGE DATASETS

= Networks: large models, many layers, many weights
= ResNet, DenseNet, EfficientNet, Transformer
= hundreds of layers, millions of parameters (GPT-3: 175 billion)

10000

MegatronLM
8300

G L]
c
&
2 7500 <ZIA
s NVIDIA.
£
4
2
£
& 5000
s
©
o
-
5
4
8
2 OpenAT UNIVERSITY of WASHINGTON
pen Gfover-
3 2500 GPT2 Mega
A2 16) % Google Al 1500 g 1500 =
OpenAT Transformer o Iy v
BERT-Large MT-DNN XLM 665 RoBERTa
ELMo GPT 340 465 355 DistilBERT
9 110 i) 66
0e . ry
2 2 3 o o
A A N N N
o 5 S S S
$ S & &
W 3 e &
[+ S ¥

LARGE NETWORKS, LARGE DATASETS

= GPT-3: 175 billions weights, ~ 350 GB, does not fit on single GPU
= ResNet, DenseNet, EfficientNet < 100 million weights, < 10 GB, may fit on single GPU

= depending on chosen resolution of input X and batch size |B|!

Total Nr. Parameters: 60M PREDICTION 832M : Total Nr. FLOPS
am am
Forward pass: activations f(X; W)
| -
i 16M 16M
— — —\ — 3™ 37TM
. . . MAX POOLING
. . . 442K CONVOLUTION 74M
w . . w . 1.3M CONVOLUTION 224M
"
1 - - k - 884K CONVOLUTION 149M
N X | —» |— Hl B H Y
~ MAX POOLING
Update steps T . . . LOCAL CONTRAST NORM
. . . 307K CONVOLUTION 223M
Wt+l — Wt - T]VwﬁB
o [[.
LOCAL CONTRAST NORM
— — N/ N/ —
EWHI < LWt < % 35K CONVOLUTION 105M
. z

Backward pass: gradients input image

LARGE NETWORKS, LARGE DATASETS

= GPT-3: 175 billions weights, ~ 350 GB, does not fit on single GPU
= ResNet, DenseNet, EfficientNet < 100 million weights, < 10 GB, may fit on single GPU

= depending on chosen resolution of input X and batch size |B|!

Forward pass: activations f(X W)

| -
Ll
— — — — —
() () ()
@ () ()
w, |@® ow @
@ @ ()
() @ ()
@ @ ()
IW;
<l
|

Backward pass: gradients

Awan et al., 2020

Memory Consumption (Extrapolated)

@
512
Only possible with Mode! Parallelism!
256
- L 2
128 > ©
/ .
__ 64
8 ,, [CPUBroadwell (128GB) o
z ‘" Volta GPU
£ 16 |, -]
g R4 CPU Skylake
8 i e (192 GB)
4 Pascal GPU
2 ie ; /
1 L i o e -~
0 100 200 300 400 500 600 700 800

Input Image Size (Width X Height)
©® ResNet-1k & ResNet-5k

DISTRIBUTED TRAINING

= Use the computational power and memory capacity of multiple nodes of a large machine
= Requires taking care of internode communication

I Single Node Multiple Nodes s CPU GPU FPGA B Specialized
100 100
o 50 i
T €
£ £
,E, 60 £ 60
&]
- 4 Y 40
o Q
£ 5
Q 20 o 20
[Q
[4 "4
0
Pre- 2010 2011 2012 2013 2014 2015 2016 2017- Pre- 2010 2011 2012 2013 2014 2015 2016 2017-
2010 resent 2010 Present
Year Year

Ben-Nun & Hoefler, 2018

DISTRIBUTED TRAINING

= Use the computational power and memory capacity of multiple nodes of a large machine
= Requires taking care of internode communication

= MPI p Socket:
BN Single Node Multiple Nodes Spark M RPC
100
—_ 18
X
7w gﬁ
£ E 14 |
E e @ 12
g g
S_ o 10
°
= 40 8 8
2 S 6
s &
g 20 x 4
L4 o4 N
Pre- 2010 2011 2012 2013 2014 2015 2016 2017- ° Pre- 2013 2014 2015 2016 2017-
2010 Present 2013 Present
Year Year

Ben-Nun & Hoefler, 2018

DISTRIBUTED TRAINING SCHEMES

= Depending on whether full model fits on a single GPU, different schemes

= data parallelism: split only data across GPUs, model cloned on each GPU

= model parallelism: split network across GPUs

= pipeline parallelism: split stages/layers across GPUs

-
>
S»

-
=9

£

£

£

£

Loss

Loss

Worker 1

Worker 2

Worker K

o= ©

Laskin et al., 2020

J =

LARGE NETWORKS, LARGE DATASETS

= Model does not fit on single GPU: no training without parallelization possible at all
= AlexNet in 2012; GPT-2, GPT-3
= Model fits on single GPU: why distributed training?
= multiple GPUs can drastically speed up training phase

— e.g. ImageNet training: from days to hours or minutes

-
>

=

-
>

v

v

£

£

Loss

Loss

Loss

Worker 1

Worker 2

Worker K

Vo9
q>@@ =

Laskin et al., 2020

=

LARGE NETWORKS, LARGE DATASETS

= ImageNet distributed training: from days, to hours, to minutes

Batch Processor DL Time Accuracy

Size Library
He et al. [1] 256 Tesla P100 x 8 Caffe 29 hours 753 %
Goyal et al. [2] 8,192 Tesla P100 x 256 Caffe2 1 hour 76.3 %
Smith et al. [3] 8,192 — 16,384 full TPU Pod TensorFlow 30 mins 76.1 %
Akiba et al. [4] 32,768 Tesla P100 x 1,024 Chainer 15 mins 74.9 %
Jia et al. [5] 65,536 Tesla P40 x 2,048 TensorFlow 6.6 mins 75.8 %
Ying et al. [6] 65,536 TPU v3 x 1,024 TensorFlow 1.8 mins 75.2 %
Mikami et al. [7] 55,296 Tesla V100 x 3,456 NNL 2.0 mins 7529 %
This work 81,920 Tesla V100 x 2,048 MXNet 1.2 mins 75.08 %

ResNet-50 training on ImageNet

—e 76.6%

0.700 r
z 0.600 batchsize #TPUs
£ s
0.500 256 1
3 N
o K0An W 021 4
ko]
'{'- 0.300 . 4096 16
o
g o020 [32
0.100 D 16384 64
0i 2 4 6 8 10 12 14 1% 18 20 22

‘Yamazoto et al., 2019; Ying, 2018 45 min

DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: simple approach for efficient distributed model training

= whole model has to fit on one GPU: depends on batch size!
= gplit whole dataset across multiple workers
= speeds up model training — when scaling works out

= Faster training, shorter experiment cycle — more opportunities to test new ideas and models

90000 Speed-up curve measured by images per second

. " e
80000 .
e
70000 o5
. £ 3

5 60000 5
s 3
S -
b .
& 50000 .
3 P
a
£ 40000 5
= P
E
= 30000

20000

10000 Yk Observed

== Perfect
0
0 10 20 30 40 50 60 70

TPU devices

Ying, 2018

DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: simple approach for efficient distributed model training

= whole model has to fit on one GPU: depends on batch size!
= gplit whole dataset across multiple workers
= speeds up model training — when scaling works out

= Faster training, shorter experiment cycle — more opportunities to test new ideas and models

Tanngmede JUWELS, V100 GPUs,

- P16
1o000e | == FP1sidead ResNet-50, ImageNet-1k, s0
. FP32 Bmf — 64

FP32(ideal)

80000 |

60000 {

Throughput (Im/s)

40000 {

20000 {
—e— FP16

& —e— FP32
ideal

a8 16 2 64 128 160
Number of GPUs

Cherti et al., 2020

DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: simple approach for efficient distributed model training

= same model is cloned across K workers
= each model clone trains on its dedicated subset of total available data
= synchronous or asynchronous optimization to keep weights across clones in sync

Process
\ Worker 1 | ’ Worker 2 ‘ ----- Worker K |
Data
T | —
Forward pass: activations f(X; W) UJ - L7 LT
c
— — — /M g N— #> Loss
o (o (o : ‘
([J [[] —
w, @ ow ©® 2 ap am a7
. . c
X|—» | il—| @ Y g ‘ N~ |fl> Loss
(] e |0 N & VO
((o _ :
{ (o P —
- .U U ul = @D Ve Wl
- W gl = 'fl> Loss
Backward pass: gradients & v LV L
=

=

DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: simple approch for efficient distributed model training
= can be understood as training a model using a larger mini-batch size |B|
- B=ByU...UBk,BNB; =0, Vi,jc K workers

— |B| = K - | Bret|, Where |Bg| = nis original, reference batch size for a single worker

Process

B

Batch

Worker 1 |

Worker 2

Worker K

O A
I

B niint
| S

Effective larger batch, Reference small batch, e

11 k 1 ki -
over all K workers per single worker Hl>
\Vf 0ss
B —

REMINDER: MINI-BATCH SGD

= Mini-batch SGD
= perform an update step using loss gradient Vw.Lg over a mini-batch of size |B|=n< N
1
Vwls = Vwﬁ Z Li
X;eB

= update step: W1 <+ W — nVwLs

Process

B

Batch

VW
B1 ‘ / If|> Loss
A&7 &7
B 9 L
| - [Ji0=

Effective larger batch, Reference small batch, — Yor,Wav/|
over all K workers per single worker ‘ |£l> L
\Vf 0SS
BK

Worker 1 Worker K

’ Worker 2 ‘ """

~

DEEP LEARNING WITH DATA PARALLELISM

= Effective larger mini-batch 2 over K workers

= perform an update step using loss gradient Vw Ly over a larger effective mini-batch
IB| = K- |Beil, |IBl=n< N

K
VwLles = Vw%z;% S Li= V‘”r:? oL
J

j= X,-ij XieB

= update step: Wiy «+ Wi — nVwLsy

Process

B

Batch JR—

VW
B1 . / lfl> Loss

A&7 &7
B 9 L
| @+ (0=

Worker 1 Worker K

’ Worker 2 ‘ """

Effective larger batch, Reference small batch, — Yor,Wav/|
over all K workers per single worker ‘ Hl> L
\Vf 0SS
BK

DEEP LEARNING WITH DATA PARALLELISM

= Training a model using a larger mini-batch size |5|

= |%B| = K - | Bet|, Where | Byl is original, reference batch size for a single worker

= Update step: W;1 <+ W; — nVwLs

= Reminder: Changes optimization trajectory and weight dynamics compared to smaller mini-batch
training

Process

3

Batch

7 7
B, .) ﬁ> Loss

)
B 9 If
2 Hl> 0ss

Worker 1 Worker 2

| Worker K

Effective larger batch, Reference small batch, = Yaw,Wav,
over all K workers per single worker - Hl>
N—7 Loss
BK

DEEP LEARNING WITH DATA PARALLELISM

= Training a model using a larger mini-batch size |5|
= |%B| = K - | Bet|, Where | Byl is original, reference batch size for a single worker
= Update step: W;1 <+ W; — nVwLs
= Reminder: Changes optimization trajectory and weight dynamics compared to smaller mini-batch

training
é 40
5]
c
235
5
il
©
Z30
a
k)
T25¢
Effective larger batch, Reference small batch, o
over all K workes per single worker E20

64 128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

Goyal et al., 2017

DEEP LEARNING WITH DATA PARALLELISM

= Data parallel distributed training requires:

= proper data feeding for each worker

= setting up workers, one per each GPU (model clones)

= sync of model clone parameters (weights) across workers: update step — communication load
— after each forward/backward pass on workers’ mini-batches

K
1 1
- Vwle= Y. Vw- > L
K P nX' B Process
= i€5; Worker 1 | ‘ Worker 2 ‘ WorkerK|
s " B

across K workers gn worker j

W
Bl \ / Ifl> Loss
o W
B 9 L
| e [Ji0=

Effective larger batch, Reference small batch, — (A A
over all K workers per single worker ‘ ﬁ> L
\V' 0SS
BK

DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: proper data feeding for each worker
= important not to let GPUs “starve” while training

Load and Load and Load and

prepare o prepare . prepare
batch batch batch

Training Training Training

operations operations operations

Figure: Mendonca, Sarmiento, ETH CSCS, 2020

DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: proper data feeding for each worker
= important not to let GPUs “starve” while training

Load and Idle Load and Idle
prepare

batch p;:z:;e while training

while training

Waiting Training Waiting Training
for data operations for data operations

DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: proper data feeding for each worker

= data pipelines: handled either by

— internal TensorFlow (see tutorial) or PyTorch routines
— specialized libraries, e.g. NVIDIA DALI

Ezample for TensorFlow dataset API
import tensorflow as tf

[...1]

Instantiate a dataset object

dataset = tf.data.Dataset.from_tensor_slices(files)
[...1]

Apply input preprocessing when required
dataset = dataset.map(decode, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.map(preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)

Randomize
dataset = dataset.shuffle(buffer_size)

Create a batch and prepare nexzt ones

dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

[oool

DEEP LEARNING WITH DATA PARALLELISM

= Data parallelism: proper data feeding for each worker

= important not to let GPUs “starve” while training
= data handling via data pipelines routines
= use efficient data containers: HDF5, LMDB, TFRecords, ...

Load and Load and Load and

CPU prepare prepare prepare
batch batch batch

Training Training Training

operations operations operations

DEEP LEARNING WITH DATA PARALLELISM

= Data parallel distributed training requires:

= proper data feeding for each worker: data pipelines, containers

= setting up workers, one per each GPU (model clones)

= sync of model clone weights across workers: update step W;.1 + W; — nVwLsys
— after each forward/backward pass on workers’ mini-batches

1S _ 1
- Vwly = — Vw— Li
v K/; anigBj I rocess ‘Worker1 ‘ |Worker2 ‘ ----- Worker K
, B
on worker j Batch
=1 Var W
Forward pass: activations f(X; W) > Bl 9 El>
O (o (o (o1 B = i
o @ @] Ve W
o [@ B -
[|, B SRl =
o (o |o e : J
o ([@ — : 7 7
R EECECE / By v >
- _ = g

@
7z
z
2

)

)
]
2

DEEP LEARNING WITH DATA PARALLELISM

= Data parallel distributed training requires:

= proper data feeding for each worker: data pipelines, containers

= sync of model clone weights across workers: handle communication between nodes

— for large K and large model size — high bandwidth required! Enter stage InfiniBand — HPC
— efficient internode communication while training on GPUs! Enter stage Horovod library

Process

B
Batch
Forward pass: activations f(X; W)
| Bl
o o o \ o
[o [
w, |® ow @ By
1 . k .
B7 X|—» | - : Y ﬁ]
o o o
[e @ —
o @ ®y/
- VwL;

Backward pass: gradients

Worker 1 ‘ | Worker 2 ‘

O
=9
S»

S

’WorkerK ‘ ‘

£

Loss

Loss

Loss

§ @
.

DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

= Horovod: making data parallel distributed training easy
= efficient worker communication during distributed training
— additional mechanisms like Tensor Fusion
= works seamlessly with job managers (SLURM)
= very easy code migration from a working single-node version

Training Process
1]
5 Averaged
Model Gradients Gty
Data Store Training Process
1]
Averaged
% Model Gradients Gradients
Training Process
1]
Model Gradients Avernged

Gradients

Sergeev, A., Del Balso, M., 2017

DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

= Supports major libraries: TensorFlow, PyTorch, Apache MXNet
= Worker communication during distributed training
= NCCL: highly optimized GPU-GPU communication collective routines
— same as in MPI: Allreduce, Allgather, Broadcast
MPI: for CPU-CPU communication
Simple scheme: 1 worker — 1 MPI Process
Process nomenclature as in MPI: rank, world_size
for local GPU assignment: local_rank

Training Process

Averaged

Model Gradients Gradients

Data Store Training Process

N Averaged
% Model Gradients Gradients

Training Process
¥y

Model Gradients

Averaged
Gradients

DEEP LEARNING WITH DATA PARALLELISM:
HOROVOD

= Horovod: making data parallel distributed training easy
= fun fact: “horovod” is a word in Russian, meaning “circle dance” (Deutsch: Reigentanz!)

DISTRIBUTED TRAINING WITH HOROVOD

= Training model with a large effective mini-batch size:

m B = UigK B,', B,'ﬂBj = Q), VI,] S K; |%| =K- |Bref|
= B, is reference batch size for single worker

Process

‘Worker1 | | Worker 2 ‘ ----- Worker K
B
Batch I
—— LA L7
Forward pass: activations f(X; W) > Bl \’ #>
O (e (o (o[1\ & = s
o @ @] - VW
o [[By | R—
B]xﬂ'.z_.a‘%ev/;j 2#> __
o |o |o S ; g
o [[— - A W
o 19 9/ b &
T W — —

Backward pass: gradients

DISTRIBUTED TRAINING WITH HOROVOD

= Training loop: K workers, one per each GPU

init: sync weights of all K workers
for e in epochs:
shard data subsets D_j to workers j
for B in batches:
each worker j gets its own B_j (local compute)
each worker j computes its own dL_j (local compute)
Allreduce: compute dL_B, average gradients (communication)
Update using dL_B for all K workers (local compute)

Process

Worker 1 ‘

Worker 2 ‘ = [WnrkerK ‘

Batch

B S

B ..,
I I I : . ,Hl>
Bk '£|>

Backward pass: gradients

Loss

0SS

-
g -8

Loss

= A
&= & &

DISTRIBUTED TRAINING WITH HOROVOD

= User friendly code migration, simple wrapping of existing code
= major libraries supported: TensorFlow, PyTorch, MXNet, ...

import tensorflow as tf import torch

import horovod.tensorflow.keras as hvd import horovod.torch as hvd

Intitialize Horowod # Initialize Horowod

hvd.init () hvd.init ()

Loood Coool

Wrap optimizer in Horowvod’s # Wrap optimizer in Horovod’s
DistributedOptimizer DistributedOptimizer

opt = hvd.DistributedOptimizer (opt) opt = hvd.DistributedOptimizer (opt)

Loooll [oood

DISTRIBUTED TRAINING WITH HOROVOD

= Handled by dataset pipeline (Horovod independent): data sharding

@s
Data

Forward pass: activations f(X; W)

1\

} Z 19sans ‘ Luasqns

(000 .. 000)

(000 ..000)
(000 .. 000)
1 S

<
g
o
[
siiosang | ...

Backward pass: gradients

‘Worker1 ‘ ‘ Worker 2 ‘

‘ Worker K ‘

S
S

S

avy

Loss

Loss

Loss

W
H

DISTRIBUTED TRAINING WITH HOROVOD

= Handled by dataset pipeline (Horovod independent): data sharding

Exzample for TensorFlow dataset API
import tensorflow as tf
import horovod.tensorflow.keras as hvd

[...]
hvd.init ()

Instantiate a dataset object
dataset = tf.data.Dataset.from_tensor_slices(files)

[...]

Get a disjoint data subset for the worker
dataset = dataset.shard(hvd.size(), hvd.rank())

Cooo]

Randomize
dataset = dataset.shuffle(buffer_size)

Create worker’s mini-batch and prepare next ones
dataset dataset.batch(batch_size)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)

[...]

DISTRIBUTED TRAINING WITH HOROVOD

= Create a SLURM job script for the code wrapped with Horovod
= K Horovod workers correspond to K tasks in total, 1 MPI process each
= K = nodes - tasks-per-node = nodes - gpus-per-node

#!/bin/bash -z

#SBATCH --account=training2004
#SBATCH --nodes=2

#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=20
#SBATCH --time=00:20:00
#SBATCH --gres=gpu:4

#SBATCH --partition=booster

srun python train_model.py

Training Process
v

Gradients.

Data Store Training Process

¥
% cradoss [

Training Process
v

Gradients [

DISTRIBUTED TRAINING WITH HOROVOD

Basics to parallelize your model

= Use Horovod to wrap existing model code
= Use data containers and pipelines to provide data to workers efficiently
= Create a SLURM job script to submit the wrapped code

DATA PARALLEL DISTRIBUTED TRAINING WITH
HOROVOD

Summary

= Opportunity to efficiently speed up training on large data
= Requires K GPUs, the larger K, the better
= Training with a larger effective batch size |B| = K|Bie|

= Data pipelines, high bandwidth network (InfiniBand) and Horovod pave the way
= Additional measures to stabilize training — upcoming lectures

o] [

5 S]

B, q> @@L
Jje=

Loss

Effective larger batch, Reference small batch. —

over all K workers per single worker D
x| &=

Loss

