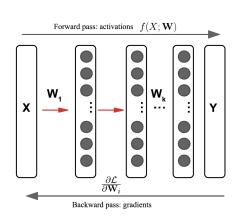


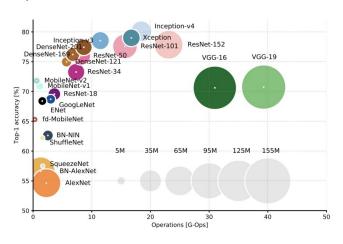
DAY 3: TOWARDS SCALABLE DEEP LEARNING Distributed Training with Large Data and Scaling

2021-02-03 | Jenia Jitsev | Cross Sectional Team Deep Learning, Helmholtz Al @ JSC

Training models that solve complex, real world tasks requires large data

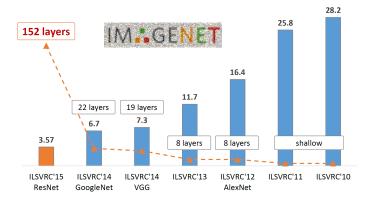
- Networks : large models, many layers, many weights
 - ResNet, DenseNet, EfficientNet, Transformers
 - hundreds of layers, hundred millions of parameters or more





- Networks : large models, many layers, many weights
 - ResNet, DenseNet, EfficientNet, Transformer
 - hundreds of layers, millions of parameters (GPT-3: 175 Billion)

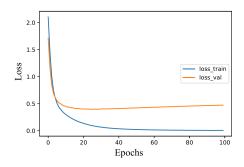
- Millions, even Billions of network parameters: training demands data
- Most breakthroughs happened on large data
 - Vision: ImageNet-1k (1.4 M images); ImageNet-21k (14 M images, ≈ 4 TB uncompressed)
 - Language: LM1B, 1 Billion Word Language Model Benchmark
- Datasets get larger and larger
 - JFT-300 (300 M images); YouTube-8M, 8 Million videos, 300 TB
 - Common Crawl dataset: 280 TB uncompressed text, ca. trillion words (as of 2020)

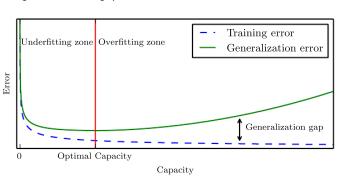


- Millions, even Billions of network parameters: training demands data
- Most breakthroughs happened on large data
- Both network models and datasets get larger and will continue to grow
 - JFT-300 (300 M images); YouTube-8M, 8 Million videos, 300 TB
 - Common Crawl: 280 TB uncompressed text, ca. trillion words;
 - GPT-3 Transformer: 175 Billion weights (350 GB required to train)

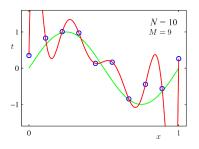
	Data Set	Type	Task	Size
=	MNIST	Image	Classification	55,000
small	Fashion MNIST	Image	Classification	55,000
- 01	CIFAR-10	Image	Classification	45,000
0	ImageNet	Image	Classification	1,281,167
large	Open Images	Image	Classification (multi-label)	4,526,492
	LM1B	Text	Language modeling	30,301,028
	Common Crawl	Text	Language modeling	~ 25.8 billion

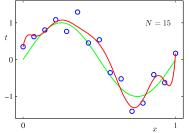
- Both network models and datasets get larger and will continue to grow
 - Generalization: large models and the generalization gap

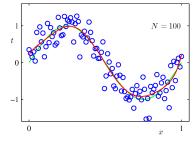




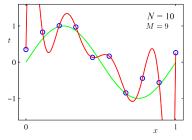
• A (classical) simple view - more data, better generalization

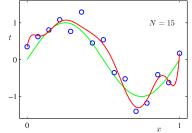


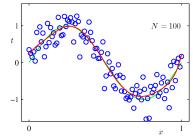




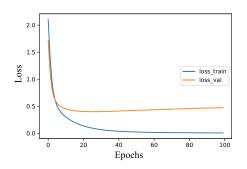
- A (classical) simple view more data, better generalization
 - Never enough data in higher dimensions curse of dimensionality

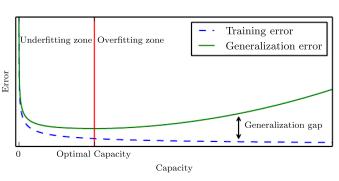




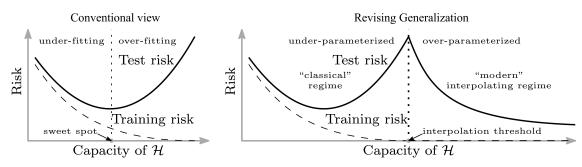


A (very recent) complex view - larger models, better generalization

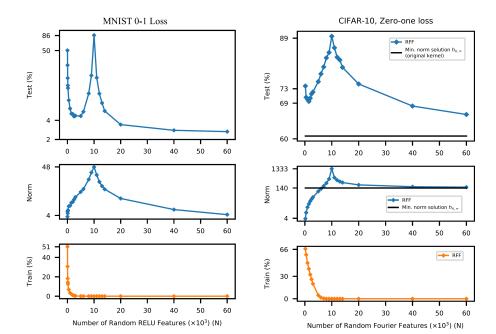




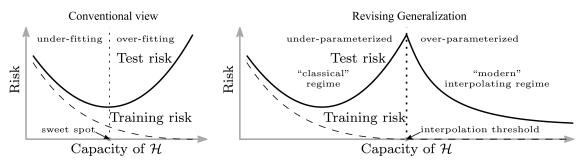
- A (very recent) complex view larger models, better generalization
 - Double descent test error curve, going beyond interpolation threshold
 - Greatly increasing number of model parameters reduces generalization gap



RECONCILING GENERALIZATION GAP

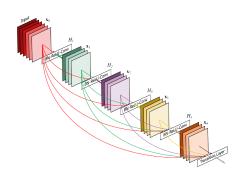


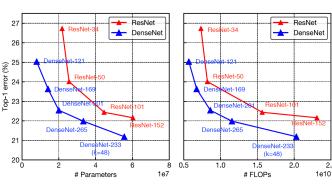
- Larger models generalize better
 - Greatly increasing number of model parameters reduces generalization gap



LARGE MODELS AND GENERALIZATION

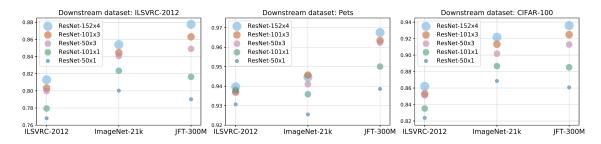
- Larger models generalize better
 - Evidence across different large scale training scenarios





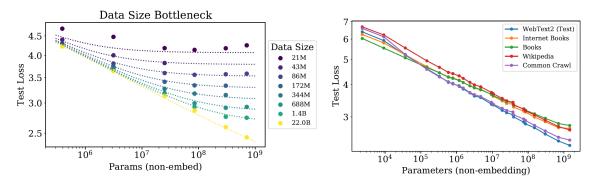
LARGE MODELS AND GENERALIZATION

- Larger models transfer better
 - Evidence across different large scale training scenarios



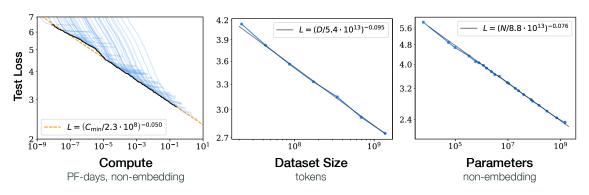
LARGE MODELS AND GENERALIZATION

- Larger models generalize & transfer better
 - Evidence across different large scale training scenarios



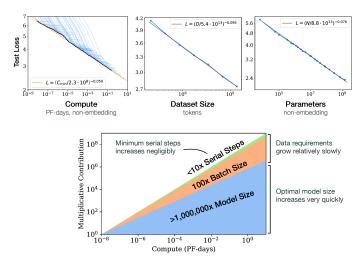
LARGE MODELS AND LARGE DATA

Scaling Laws: increasing model size and data increases generalization



LARGE MODELS AND LARGE DATA

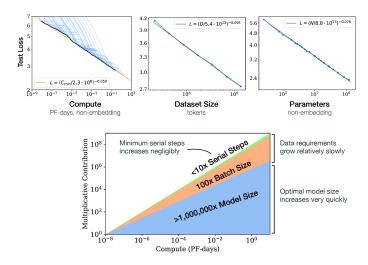
 Scaling Laws: given sufficient compute budget, increasing both model size and data size is the way to further strongly boost generalization



Kaplan et al, 2020

LARGE MODELS AND LARGE DATA

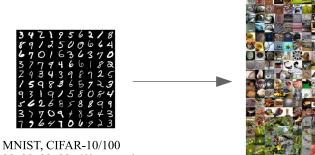
Increasing model size is good idea, provided enough compute and data



Kaplan et al, 2020

DISTRIBUTED TRAINING WITH LARGE DATA

- ImageNet: transition to modern deep learning era;
 - outstanding effort in large data collection (Fei-Fei et al, Stanford)
 - building dataset via crowdsourcing over 4 years

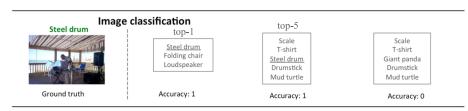


28x28, 32x32; 60k examples

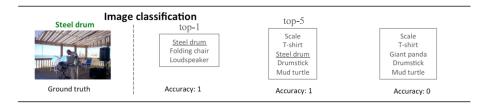
ImageNet-1k, 21k; OpenImages, FFHQ... 224x224, 1024x1024; 1.2M examples

- Full dataset (ImageNet-21k): 14M images, 21k classes labeled
- ImageNet-1k : dataset for ILSVRC competition (2010 2017), 1k classes
 - 1.28M Training, 100k Test, 50k Validation sets
 - usual image resolution used for training: 224x224
 - current accuracies : > 88% top-1, > 97% top-5

- Full dataset (ImageNet-21k): 14M images, 21k classes labeled
- ImageNet-1k: dataset for ILSVRC competition (2010 2017), 1k classes
 - 1.28M Training, 100k Test, 50k Validation sets
 - usual image resolution used for training: 224x224
 - current accuracies : > 88% top-1, > 97% top-5

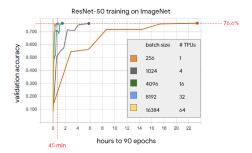


- ImageNet-1k: still gold standard in training large visual recognition models
 - pre-trained models: transfer learning on more specific smaller datasets
- ResNet-50 : baseline model network, accuracies : \approx 75% top-1, \approx 94% top-5 (Winner ILSVRC 2015)

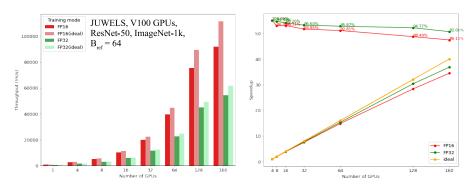


- ResNet-50: efficient distributed training in data parallel mode possible
 - 25M weights, 103Mb for activations, model training on 224x224 ImageNet-1k
 - ullet pprox 4 GB Memory with $B_{ref}=64$: fits onto single GPU

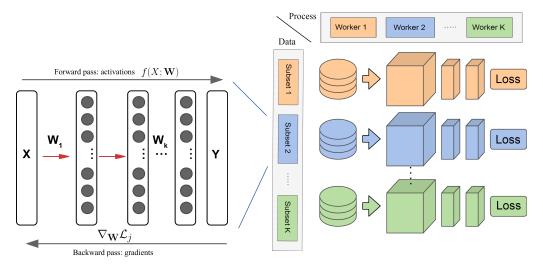
	Batch	Processor	DL	Time	Accuracy
	Size		Library		
He et al. [1]	256	Tesla P100 × 8	Caffe	29 hours	75.3 %
Goyal et al. [2]	8,192	Tesla P100 \times 256	Caffe2	1 hour	76.3 %
Smith et al. [3]	$8,192 \rightarrow 16,384$	full TPU Pod	TensorFlow	30 mins	76.1 %
Akiba et al. [4]	32,768	Tesla P100 × 1,024	Chainer	15 mins	74.9 %
Jia et al. [5]	65,536	Tesla P40 × 2,048	TensorFlow	6.6 mins	75.8 %
Ying et al. [6]	65,536	TPU v3 \times 1,024	TensorFlow	1.8 mins	75.2 %
Mikami et al. [7]	55,296	Tesla V100 × 3,456	NNL	2.0 mins	75.29 %
This work	81,920	Tesla V100 × 2,048	MXNet	1.2 mins	75.08%



- Efficient distributed training in data parallel mode
 - requires good scaling of throughput Images/sec during training
 - image throughput during training ideally increasing as $\tau_{K}^{*} = K \cdot \tau_{ref}$ Images/sec



- Efficient distributed training in data parallel mode
 - requires good scaling of throughput Images/sec during training



Efficient distributed training in data parallel mode

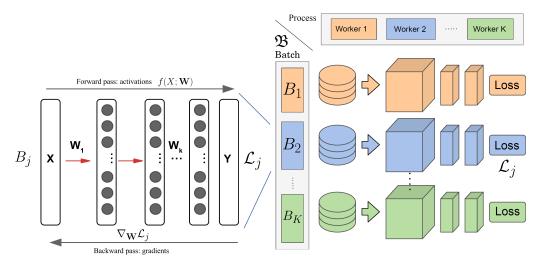
Data IO

- Efficient file system, efficient data container
 - few separate large files; sequential access
 - LMDB, HDF5, TFRecords
- Efficient Data pipeline
 - eg tf.data : interleave, cache, prefetch, ...
 - avoid GPU starvation

```
...

141M /p/largedata/cstdl/ImageNet/imagenet-processed/train-00171-of-01024
137M /p/largedata/cstdl/ImageNet/imagenet-processed/train-00172-of-01024
139M /p/largedata/cstdl/ImageNet/imagenet-processed/train-00173-of-01024
142M /p/largedata/cstdl/ImageNet/imagenet-processed/train-00174-of-01024
...
```

- Efficient distributed training in data parallel mode
 - requires efficient balance of GPU gradient compute and communication



Efficient distributed training in data parallel mode possible

SGD Optimization

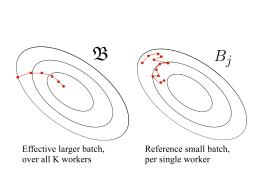
- Make sure model fits into GPU memory
 - remember: this also depends on worker's batch size |B_{ref}| and input image resolution
- Avoid internode communication overhead & bottlenecks
 - Most compute for forward-backward passes
 - |B_{ref}| per GPU not too small
 - High capacity network: InfiniBand
 - Horovod: additional mechanisms, eg. Tensor Fusion
- Corresponds to training single model with a larger effective batch size $|\mathfrak{B}| = K \cdot |B_{ref}|$
 - Image Throughput ideally increasing as $\tau_K = K \cdot \tau_{ref}$ Images/sec

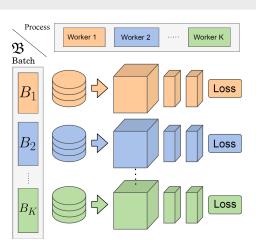
- ResNet-50 : efficient distributed training in data parallel mode on ImageNet-1k
- Ultimate aim: reducing training time to accuracy
 - increasing throughput Images/sec during training only intermediate station!

	Batch	Processor	DL	Time	Accuracy
	Size		Library		
He et al. [1]	256	Tesla P100 × 8	Caffe	29 hours	75.3 %
Goyal et al. [2]	8,192	Tesla P100 \times 256	Caffe2	1 hour	76.3 %
Smith et al. [3]	$8,192 \rightarrow 16,384$	full TPU Pod	TensorFlow	30 mins	76.1 %
Akiba et al. [4]	32,768	Tesla P100 \times 1,024	Chainer	15 mins	74.9 %
Jia et al. [5]	65,536	Tesla P40 \times 2,048	TensorFlow	6.6 mins	75.8 %
Ying et al. [6]	65,536	TPU v3 \times 1,024	TensorFlow	1.8 mins	75.2 %
Mikami et al. [7]	55,296	Tesla V100 × 3,456	NNL	2.0 mins	75.29 %
This work	81,920	Tesla V100 × 2,048	MXNet	1.2 mins	75.08%

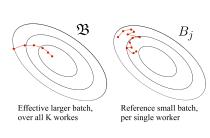
SGD Optimization

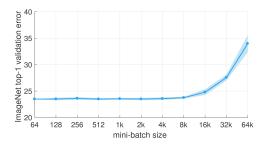
- Large effective batch size |𝔄| may require hyperparameter retuning
 - Reminder: Large effective batch sizes alter optimization



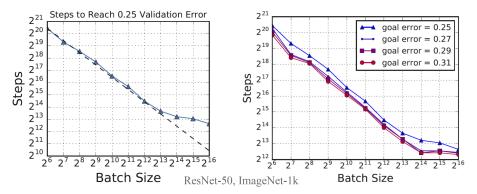


- Efficient distributed training in data parallel mode
- Large effective batch sizes may require hyperparameter re-tuning
 - learning rate and schedule
 - optimizer type
- Reminder: hyperparameter tuning for a given $|\mathfrak{B}|$ on the validation set!





- Efficient distributed training in data parallel mode
 - Outlook: coping with training on large effective batch sizes
 - Reducing training time to accuracy



LARGE MODELS, LARGE DATA

Summary

- Reconciling generalization: large models generalize better
 - given enough data and compute to train
- Efficient data parallel training on large datasets like ImageNet-1k: possible
- Data pipelines, Horovod, InfiniBand and large batch sizes pave the way
- Measures to stabilize training with large batches upcoming lectures

