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LARGE NETWORKS, LARGE DATASETS

= Training models that solve complex, real world tasks requires large data
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LARGE NETWORKS, LARGE DATASETS

= Networks :

large models, many layers, many weights

= ResNet, DenseNet, EfficientNet, Transformers
= hundreds of layers, hundred millions of parameters or more

Forward pass: activations f(X; W)
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Backward pass: gradients

Canziani et al, 2017
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LARGE NETWORKS, LARGE DATASETS

= Networks : large models, many layers, many weights
= ResNet, DenseNet, EfficientNet, Transformer
= hundreds of layers, millions of parameters (GPT-3: 175 Billion)
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LARGE NETWORKS, LARGE DATASETS

= Millions, even Billions of network parameters: training demands data
= Most breakthroughs happened on large data

= Vision: ImageNet-1k (1.4 M images); ImageNet-21k (14 M images, ~ 4 TB uncompressed)
= Language: LM1B, 1 Billion Word Language Model Benchmark

= Datasets get larger and larger

= JFT-300 (300 M images); YouTube-8M, 8 Million videos, 300 TB
= Common Crawl dataset : 280 TB uncompressed text, ca. trillion words (as of 2020)

{ 152 layers }

\
\
: 7.3

v 6.7

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet




LARGE NETWORKS, LARGE DATASETS

= Millions, even Billions of network parameters: training demands data
= Most breakthroughs happened on large data
= Both network models and datasets get larger and will continue to grow

= JFT-300 (300 M images); YouTube-8M, 8 Million videos, 300 TB
= Common Crawl: 280 TB uncompressed text, ca. trillion words;

— GPT-3 Transformer: 175 Billion weights (350 GB required to train)

large

small

Data Set Type | Task Size
MNIST Image | Classification 55,000
Fashion MNIST | Image | Classification 55,000
CIFAR-10 Image | Classification 45,000
ImageNet Image | Classification 1,281,167
Open Images Image | Classification (multi-label) | 4,526,492
LM1B Text Language modeling 30,301,028
Common Crawl | Text Language modeling ~25.8 billion




RECONCILING LARGE MODELS AND
GENERALIZATION

= Both network models and datasets get larger and will continue to grow
= Generalization: large models and the generalization gap
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Goodfellow et al, 2016



RECONCILING LARGE MODELS AND
GENERALIZATION

= A (classical) simple view - more data, better generalization

Bishop, 2006



RECONCILING LARGE MODELS AND
GENERALIZATION

= A (classical) simple view - more data, better generalization
= Never enough data in higher dimensions - curse of dimensionality

N=10
M=9 1

Bishop, 2006



RECONCILING LARGE MODELS AND
GENERALIZATION

= A (very recent) complex view - larger models, better generalization
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RECONCILING LARGE MODELS AND
GENERALIZATION

= A (very recent) complex view - larger models, better generalization

= Double descent test error curve, going beyond interpolation threshold
= Greatly increasing number of model parameters reduces generalization gap
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RECONCILING GENERALIZATION GAP
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RECONCILING LARGE MODELS AND
GENERALIZATION

= Larger models generalize better
= Greatly increasing number of model parameters reduces generalization gap

Conventional view Revising Generalization
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LARGE MODELS AND GENERALIZATION

= Larger models generalize better

= Evidence across different large scale training scenarios

Huang et al, CVPR, 2017
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LARGE MODELS AND GENERALIZATION

= Larger models transfer better
= Evidence across different large scale training scenarios

Downstream dataset: ILSVRC-2012

Downstream dataset: Pets

Downstream dataset: CIFAR-100
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LARGE MODELS AND GENERALIZATION

= Larger models generalize & transfer better
= Evidence across different large scale training scenarios

Data Size Bottleneck
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LARGE MODELS AND LARGE DATA

Test Loss

= Scaling Laws: increasing model size and data increases generalization
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LARGE MODELS AND LARGE DATA

= Scaling Laws: given sufficient compute budget, increasing both model size and data size is
the way to further strongly boost generalization
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LARGE MODELS AND LARGE DATA

= Increasing model size is good idea, provided enough compute and data

Test Loss
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DISTRIBUTED TRAINING WITH LARGE DATA

= ImageNet: transition to modern deep learning era;

= outstanding effort in large data collection (Fei-Fei et al, Stanford)
= building dataset via crowdsourcing over 4 years
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DISTRIBUTED TRAINING ON IMAGENET

= Full dataset (ImageNet-21k) : 14M images, 21k classes labeled
= ImageNet-1k : dataset for ILSVRC competition (2010 - 2017), 1k classes

= 1.28M Training, 100k Test, 50k Validation sets
= usual image resolution used for training: 224x224
= current accuracies : > 88% top-1, > 97% top-5

PASCAL
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Russakovsky et al, IJCV, 2015



DISTRIBUTED TRAINING ON IMAGENET

= Full dataset (ImageNet-21k) : 14M images, 21k classes labeled
= ImageNet-1k : dataset for ILSVRC competition (2010 - 2017), 1k classes

= 1.28M Training, 100k Test, 50k Validation sets
= usual image resolution used for training: 224x224
= current accuracies : > 88% top-1, > 97% top-5

Image classification
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Russakovsky et al, IJCV, 2015



DISTRIBUTED TRAINING ON IMAGENET

= ImageNet-1k : still gold standard in training large visual recognition models
= pre-trained models: transfer learning on more specific smaller datasets

= ResNet-50 : baseline model network, accuracies : =~ 75% top-1, ~ 94% top-5 (Winner
ILSVRC 2015)

Image classification
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Russakovsky et al, IJCV, 2015



DISTRIBUTED TRAINING ON IMAGENET

= ResNet-50 : efficient distributed training in data parallel mode possible

= 25M weights, 103Mb for activations, model training on 224x224 ImageNet-1k
= ~~ 4 GB Memory with B = 64 : fits onto single GPU

Batch Processor DL Time Accuracy

Size Library
He et al. [1] 256 Tesla P100 x 8 Caffe 29 hours 75.3 %
Goyal et al. [2] 8,192 Tesla P100 x 256 Caffe2 1 hour 76.3 %
Smith et al. [3] 8,192 — 16,384 full TPU Pod TensorFlow 30 mins 76.1 %
Akiba et al. [4] 32,768 Tesla P100 x 1,024 Chainer 15 mins 74.9 %
Jia et al. [5] 65,536 Tesla P40 x 2,048 TensorFlow 6.6 mins 75.8 %
Ying et al. [6] 65,536 TPU v3 x 1,024 TensorFlow 1.8 mins 75.2 %
Mikami et al. [7] 55,296 Tesla V100 x 3,456 NNL 2.0 mins 7529 %
This work 81,920 Tesla V100 x 2,048 MXNet 1.2 mins 75.08%

Yamazoto et al, 2019; Ying, 2018

validation accuracy
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DISTRIBUTED TRAINING ON IMAGENET

= Efficient distributed training in data parallel mode

= requires good scaling of throughput Images/sec during training
= image throughput during training ideally increasing as ¢ = K - 7r Images/sec

ammgmede JUWELS, V100 GPUs, N
100000 | ™= Fe1stdead  ResNet-50, ImageNet-1k, 50
. FP32 Bmf: 64

FP32(ideal)

—e— FP16
—e— FP32
ideal

Number of GPUSs Number of GPUs

Cherti et al, 2020



DISTRIBUTED TRAINING ON IMAGENET

= Efficient distributed training in data parallel mode
= requires good scaling of throughput Images/sec during training
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DISTRIBUTED TRAINING ON IMAGENET

= Efficient distributed training in data parallel mode

Data 10

m Efficient file system, efficient data container

= few separate large files; sequential access
= L MDB, HDF5, TFRecords

= Efficient Data pipeline

= eg tf.data : interleave, cache, prefetch, . ..
= avoid GPU starvation

141M /p/largedata/cstdl/ImageNet/imagenet -processed/train-00171-0f-01024
137M /p/largedata/cstdl/ImageNet/imagenet -processed/train-00172-0f-01024
139M /p/largedata/cstdl/ImageNet/imagenet -processed/train-00173-0f-01024
142M /p/largedata/cstdl/ImageNet/imagenet -processed/train-00174-0f-01024



DISTRIBUTED TRAINING ON IMAGENET

= Efficient distributed training in data parallel mode
= requires efficient balance of GPU gradient compute and communication

Process
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DISTRIBUTED TRAINING ON IMAGENET

= Efficient distributed training in data parallel mode possible

SGD Optimization

= Make sure model fits into GPU memory
= remember: this also depends on worker’s batch size |Bi| and input image resolution

= Avoid internode communication overhead & bottlenecks

= Most compute for forward-backward passes

= |Bt| per GPU not too small

= High capacity network: InfiniBand

= Horovod: additional mechanisms, eg. Tensor Fusion

= Corresponds to training single model with a larger effective batch size |%B| = K - | Bl
= Image Throughput ideally increasing as 7, = K - 7.r Images/sec



DISTRIBUTED TRAINING ON IMAGENET

= ResNet-50 : efficient distributed training in data parallel mode on ImageNet-1k
= Ultimate aim: reducing training time to accuracy

= increasing throughput Images/sec during training only intermediate station!

Batch Processor DL Time Accuracy

Size Library
He et al. [1] 256 Tesla P100 x 8 Caffe 29 hours 75.3 %
Goyal et al. [2] 8,192 Tesla P100 x 256 Caffe2 1 hour 76.3 %
Smith et al. [3] 8,192 — 16,384 full TPU Pod TensorFlow 30 mins 76.1 %
Akiba et al. [4] 32,768 Tesla P100 x 1,024 Chainer 15 mins 74.9 %
Jia et al. [5] 65,536 Tesla P40 x 2,048 TensorFlow 6.6 mins 75.8 %
Ying et al. [6] 65,536 TPU v3 x 1,024 TensorFlow 1.8 mins 75.2 %
Mikami et al. [7] 55,296 Tesla V100 x 3,456 NNL 2.0 mins 75.29 %
This work 81,920 Tesla V100 x 2,048 MXNet 1.2 mins 75.08%

Yamazoto et al, 2019



DISTRIBUTED TRAINING ON IMAGENET

SGD Optimization

= Large effective batch size |B| may require hyperparameter retuning
= Reminder: Large effective batch sizes alter optimization

Process
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DISTRIBUTED TRAINING ON IMAGENET

= Efficient distributed training in data parallel mode
= |arge effective batch sizes may require hyperparameter re-tuning

= |earning rate and schedule
= optimizer type

= Reminder: hyperparameter tuning for a given 28| - on the validation set!
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DISTRIBUTED TRAINING ON IMAGENET

= Efficient distributed training in data parallel mode

= QOutlook: coping with training on large effective batch sizes

= Reducing training time to accuracy
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LARGE MODELS, LARGE DATA

Summary

= Reconciling generalization: large models generalize better
= given enough data and compute to train

» Efficient data parallel training on large datasets like ImageNet-1k : possible
= Data pipelines, Horovod, InfiniBand and large batch sizes pave the way
= Measures to stabilize training with large batches - upcoming lectures
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