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OUTLINE

Performance of Deep Learning

Building IO Pipelines



INTRODUCTION: A SIMPLE EXAMPLE
What is the runtime of this piece of code?

n=2**20 # For example , 1 Million Floats
m=np.random.normal(0,1,n).astype(np.float64) # Init randomly , runtime irrelevant
mean=m.mean() # How long does this take?

Laptop Frequency ∼ 2 GHz
1 Flop / cycle — 0.5 ns / float



MEMORY BUS
Simple architecture model

Laptop Frequency: ∼ 2 GHz
1 Flop / cycle — 0.5 ns / float
DDR4 Bandwidth: ∼ 12 GByte/sec – 0.66 ns / float
Conclusion: Memory bandwidth is not a bottleneck single core of my laptop.
In general, the performance can be memory-bound.



THE ROOFLINE MODEL
Arithmetic intensity: Number of Flop / Byte

ToDo:
Check your peak compute performance.
Check you memory bandwidth.
Determine the minimum arithmetic intensity.
Exercise: Optimize your memory access patterns!



CONVOLUTIONAL NEURAL NETWORK
Single convolution 128x128x16, 16 channels, float32

Input and output size: 1 MB , Weight size 2.25 kB (cached).
Total float ops: 72 MFlop.
Arithmetic intensity: nout · kx · ky/4 = 36
Peak Compute (A100): 21 TFlop/sec (FP32)
GPU Memory Bandwidth (A100): 1.6 TByte / sec
Minimum arithmetic intensity 13 (FP32)
Peak Compute (A100): 151 TFlop/sec (TP32)
Minimum arithmetic intensity 94 (TP32)



THE BOTTLENECKS IN DL

File System

PCI Bus

GPU
Memory

Bus

File System Bandwidth: 10 GByte /sec (its complicated)
PCIe 4.0x16 Bandwidth: 32 GByte / sec
GPU-GPU Bandwidth (NVLinkv3): 600 GByte / sec
Peak Compute (A100): 21 TFlop/sec (FP32)
GPU Memory Bandwidth (A100): 1.6 TByte / sec



CASE ANALYSIS: RESNET50 TRAINING ON IMAGENET

Dataset size: 1.2 M Images, Training Resolution: 224x224x3
Original Data: JPGs of different sizes, total 140 GB
Uncompressed, resized to 224x224x3 data size: 180 GB
PCIe limit 200k Images / sec.
ResNet50 gradient computation: ∼ 20 GFlop.
Compute Limit per GPU: (FP32) 1k Images / sec (TF32) 7k Images /sec
Total weight size: 100 MB (float32)
Dominating Operations: 3x3 Conv2D on 128x128x64, 64x64x128, 32x32x256, 16x16x512,
Intensities: 144, 288, 576,1156



SERIAL EXECUTION

def load_data ():
return np.random.normal(0,1, (224 ,224 ,3)),

# Define Model
inp=tf.compat.v1.placeholder(shape =(1 ,224 ,224 ,3),dtype=tf.float32 )
output = tf.keras.layers.Conv2D (16, kernel_size =(3 ,3), use_bias=False)(inp)
# Prepare Session
sess=tf.compat.v1.Session ()
sess.run(tf.compat.v1.initialize_all_variables ())
# Run Model
data=load_data ()
sess.run(output , feed_dict ={inp: data })
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PREFETCH: ASYNCHRONOUS EXECUTION
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Parallel execution of loading and compute.
Buffered: Load operation fills a buffer, compute consumes it.
The buffer must be adjusted to the problem size.
Example of latency hiding.
Tensorflow dataset API: An easy way to do that.



PREFETCH
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THE DATASET API



THE DATASET API: TF2

Eager execution: The compute graph is
constructed on the fly.
from_generator receives a generator
function, a callable that creates an iterator.
So Keras can restart the iterator after each
epoch.
Datasets can be transformed with a
functional API
prefetch(<num>) creates and fills a buffer.



SHARD
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Using shard(i,n) will first skip the first i entries in the dataset.
Then it will skip n entries.
Thus you will get only those samples with index k , where k mod n = i .
Thus, a not can get its shard, even random access is not available.



BATCH
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batch(n) will accumulate n samples and return a batched tensor.
It will only load the samples after the next item was pulled, so combine with prefetch!
The inverse operation is unbatch.



SHUFFLE
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fill buffer

pick at random

shuffle(n) buffer n.
In each iteration, it will return a sample randomly from the buffer.
The buffer is only refilled when needed. Combine with prefetch!
Note that it yields only a limited randomization.



MAP
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map(fun, n_parallel_calls will apply a python function on each element.
The execution is can be parallelized.
(Pure) python and parallelization can be troublesome. Beware of the cliffs of
multiprocessing!



GOOD PRACTICES

Store your data with a transparent order on disk. Otherwise you cannot do sequential read
and this may be expensive.
Do not store data in many small files.
Your dataset fits into the node’s main memory? Easy. Read sequentially.
Your dataset does not fit into main memory?

Make sure you can read you data seqentially in chunks.
Many relatively large files? OK.
File format with defined storage order and support for sequential reading? Perfect.
Store data pre-shuffled. Otherwise you are likely to get random-access to HD.

Perform pre-processing on the fly, preferably directly in native tf, if necessary with parallel map.



NETWORK ANALYSIS

Infiniband Bandwidth: ∼ 25-50 Gigabyte/sec.
Infiniband Latency: 150 µs
Model size (ResNet50): 100 MB = 5 ms per transfer.
No of transfers: ∼ 2 log2 nnodes

Horovod periodically checks for finished parts of the gradient. It will then start transferring if a
threshold is exceeded.
time

C
om

pute

Transfer

C
om

pute

Transfer

C
om

pute

Transfer

C
om

pute

Transfer

C
om

pute

Transfer



NETWORK ANALYSIS

Infiniband Bandwidth: ∼ 25-50 Gigabyte/sec.
Infiniband Latency: 150 µs
Model size (ResNet50): 100 MB = 5 ms per transfer.
No of transfers: ∼ 2 log2 nnodes

Horovod periodically checks for finished parts of the gradient. It will then start transferring if a
threshold is exceeded.
time

C
om

pute

Transfer

C
om

pute

Transfer

C
om

pute

Transfer

C
om

pute

Transfer

C
om

pute

Transfer



HOROVOD TIMELINE

Horovod Timeline: Get a timeline of transfers
Easy to use: horovodrun -np 4 –timeline-filename /path/to/timeline.json python
train.py

Open with chrome tracing.



TENSORBOARD PROFILER

Start with ssh tunnel in a single command on the login node:
ssh -L 8889: localhost :53415 kesselheim1@juwels.fz-juelich.de "bash -c \" source /p/project/

training2004/course2021_working_environment/activate.sh && tensorboard --port 53415 --
logdir /p/project/training2004/kesselheim1/ \" "

Navigate to http://localhost:8889
Please change remote port from 53415 to you favourite random number above 1024.
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