DAY 3: TOWARDS SCALABLE DEEP LEARNING

Is my code Fast? Performance Analysis

2021-02-03 | Stefan Kesselheim | Helmholtz Al @ JSC

JJ JULICH

Forschungszentru

OUTLINE

Performance of Deep Learning

Building 10 Pipelines

INTRODUCTION: A SIMPLE EXAMPLE

What is the runtime of this piece of code?

n=2%%20

m=np.random.normal (0,1,n).astype(np.float64)

mean=m.mean ()

Nanoseconds / float

2 o 2 = = = = oM
N o W 2 N owm -d o
noE &n 8 &5 &5 & 8

v

\

1

X

o
=1
5}

= Laptop Frequency ~ 2 GHz
= 1 Flop / cycle — 0.5 ns / float

For example,
Init rTandoml

1 Million Floats
Yy, runtime irrelevant

How long does this take?

T
10 10° 107
Number of floats

g

MEMORY BUS

Simple architecture model

Main Memory
- Bus

;

Cache <+— CPU Core

Laptop Frequency: ~ 2 GHz

1 Flop / cycle — 0.5 ns / float

DDR4 Bandwidth: ~ 12 GByte/sec — 0.66 ns / float

Conclusion: Memory bandwidth is not a bottleneck single core of my laptop.
In general, the performance can be memory-bound.

THE ROOFLINE MODEL

Arithmetic intensity: Number of Flop / Byte

performance [GFLOPS]

Bound based on bandwidth -

Bound based on peak performance

i
Asp,

ApD,

1 App,

va 2 1 2 4 8 16 R e 128 26 su

ToDo:
= Check your peak compute performance.
= Check you memory bandwidth.
= Determine the minimum arithmetic intensity.
= Exercise: Optimize your memory access patterns!

Operational Intensity [FLOPS/byte]

CONVOLUTIONAL NEURAL NETWORK

Single convolution 128x128x16, 16 channels, float32
= |nput and output size: 1 MB , Weight size 2.25 kB (cached).
= Total float ops: 72 MFlop.
= Arithmetic intensity: noyt - kx - ky /4 = 36

Peak Compute (A100): 21 TFlop/sec (FP32)

GPU Memory Bandwidth (A100): 1.6 TByte / sec

Minimum arithmetic intensity 13 (FP32)

Peak Compute (A100): 151 TFlop/sec (TP32)

Minimum arithmetic intensity 94 (TP32)

THE BOTTLENECKS IN DL

Co
6}/ 6}, 6}’@ (/@
& %,
» %

File System Bandwidth: 10 GByte /sec (its complicated)
PCle 4.0x16 Bandwidth: 32 GByte / sec

GPU-GPU Bandwidth (NVLinkv3): 600 GByte / sec
Peak Compute (A100): 21 TFlop/sec (FP32)

= GPU Memory Bandwidth (A100): 1.6 TByte / sec

CASE ANALYSIS: RESNET50 TRAINING ON IMAGENET

= Dataset size: 1.2 M Images, Training Resolution: 224x224x3

Original Data: JPGs of different sizes, total 140 GB

= Uncompressed, resized to 224x224x3 data size: 180 GB

PCle limit 200k Images / sec.

ResNet50 gradient computation: ~ 20 GFlop.

Compute Limit per GPU: (FP32) 1k Images / sec (TF32) 7k Images /sec

= Total weight size: 100 MB (float32)

= Dominating Operations: 3x3 Conv2D on 128x128x64, 64x64x128, 32x32x256, 16x16x512,
Intensities: 144, 288, 576,1156

ResNet-50 Model Architecture

Input
Image

SERIAL EXECUTION

def load_data():

return np.random.normal (0,1, (224,224,3)),

Define Model
inp=tf.compat.vl.placeholder (shape=(1,224,224,3) ,dtype=tf.float32)
output = tf.keras.layers.Conv2D(16, kernel_size=(3,3), use_bias=False) (inp)
Prepare Session

sess=tf.compat.vl.Session()
sess.run(tf.compat.vl.initialize_all_variables())

Run Model
data=load_data ()

sess.run(output, feed_dict={inp: data })
time
—_
— — — —
(o] o o o
Q QO) Q
Qo o o [oX

andwon
andwo)
andwo)
andwo)

peo

andwo)

PREFETCH: ASYNCHRONOUS EXECUTION

time

_—

— — — — — — —

2 3 2 2 2 2 2

o o o o o o o
(@) (@) (@) (@) (@) (@)
o (@] o o (@] o
3 3 3 3 3 3
© © © © © ©
C C [[C [
— — — — — —
D (0] D D (0] (0]

= Parallel execution of loading and compute.
= Buffered: Load operation fills a buffer, compute consumes it.

= The buffer must be adjusted to the problem size.

= Example of latency hiding.
= Tensorflow dataset API: An easy way to do that.

andwon

PREFETCH

time

_—

ot (0)(1)(2)()4)(8)(8))8 ()02 1019
wwo@m@ﬁa@ﬂ

Output @

THE DATASET API

In [1]: M import tensorflow as tf

In [2]: M def dataset_generator():
def dataset iterator():
for 1 in range(20):
yield "sample " + str(i)
return dataset iterator

In [12]: M tf.compat.vl.disable eager_ execution ()
In [3]1: M|# Example (pure python)
gen=dataset_generator ()
In [13]: M dataset=tf.compat.vl.data.Dataset.from generator(
In [4]: M iterator=gen() . gen, output_types=tf. ?trlﬂg)
it=dataset.make one shot iterator()
. . data tensor=it.get next()
In [3]: M print(iterator._next_ ()) - -
sample 0 In [14]: M sess=tf.compat.vl.Session()
) print (sess.run(data_tensor))
In [6]: M iterator._ next () print (sess.run(data tensor))
Out[é]: 'sample 1'
b'sample 0'
In[1: M

b'sample 1°'

THE DATASET API: TF2

In

In

In

import tensorflow as tf

def dataset_generator():
def dataset iterator():
for i in range(20):
tf.print ("Creating Sample " + str(i))
yield "sample " + str(i)
return dataset iterator()

dataset=tf.data.Dataset.from generator(
dataset generator, output_types=tf.string)

a=iter(dataset)
dataset=dataset.prefetch(f)

it=dataset.as_numpy_ iterator(}
it.next()

Creating Sample 0
Creating Sample 1
Creating Sample 2

: b'sample 0

Creating sSample
Creating Sample
Creating Sample
Creating Sample
Creating Sample
Creating sSample

R Y]

= Eager execution: The compute graph is
constructed on the fly.

m from_generator receives a generator
function, a callable that creates an iterator.
So Keras can restart the iterator after each
epoch.

= DatasetS can be transformed with a
functional API

= prefetch(<num>) creates and fills a buffer.

(5)(eJ(7)(8)(=)(10)(11)(12)(13)(14)(15)(16)(17)

shard (0)(3)(6)(2)(12)(18)(1J(4)(7)(10)13)(x8)(2])(5)(8)(11)(14)(17)

Shard 0 Shard 1 Shard 2

= Using shard (i,n) will first skip the first i entries in the dataset.

= Then it will skip n entries.

= Thus you will get only those samples with index k, where kmod n = i.
= Thus, a not can get its shard, even random access is not available.

BATCH
nput (0)(1)(2)(3)(4)(s)(e)(7](8)(e)(10)(11)(12)(13)(14)(15)

Batch

0 yoreg

GEEE)

I yoreg
@) (=))

Z yoleg
BiEele

€ yoleg
BEREE)

= batch(n) will accumulate n samples and return a batched tensor.
= |t will only load the samples after the next item was pulled, so combine with prefetch!
= The inverse operation is unbatch.

SHUFFLE
input (0)(1)(2)(3)(4](8)(e](7)(8](e](r0)(11)(12)(13)(14]

auter (1(7)(2)(5)()(1)(2)7)

pick at random
Shuffle

= shuffle(n) buffer n.

= |n each iteration, it will return a sample randomly from the buffer.
= The buffer is only refilled when needed. Combine with prefetch!
= Note that it yields only a limited randomization.

fill buffer

MAP

time
_—
® map(fun, n_parallel_calls will apply a python function on each element.

= The execution is can be parallelized.

= (Pure) python and parallelization can be troublesome. Beware of the cliffs of
multiprocessing!

GOOD PRACTICES

= Store your data with a transparent order on disk. Otherwise you cannot do sequential read
and this may be expensive.

= Do not store data in many small files.

= Your dataset fits into the node’s main memory? Easy. Read sequentially.

= Your dataset does not fit into main memory?

= Make sure you can read you data segentially in chunks.

= Many relatively large files? OK.

= File format with defined storage order and support for sequential reading? Perfect.
= Store data pre-shuffled. Otherwise you are likely to get random-access to HD.

= Perform pre-processing on the fly, preferably directly in native tf, if necessary with parallel map.

NETWORK ANALYSIS

Infiniband Bandwidth: ~ 25-50 Gigabyte/sec.
Infiniband Latency: 150 us
Model size (ResNet50): 100 MB = 5 ms per transfer.

No of transfers: ~ 2 logy Mnodes
Horovod periodically checks for finished parts of the gradient. It will then start transferring if a

threshold is exceeded.

time
_

(@) @] o @] @]

o (@] (@] (@] (@]

3 3 3 3 3

© © © © ©

C C C ey C

— — — — —

D (0] (0] (0] (0]
= = = = =
Q Q Q Q Q
35 35 3 > >
w (2] (2] (2] (2]
— — — — —
D (0] (0] (0] (0]
= = = = =

NETWORK ANALYSIS

Infiniband Bandwidth: ~ 25-50 Gigabyte/sec.
Infiniband Latency: 150 us
Model size (ResNet50): 100 MB = 5 ms per transfer.

No of transfers: ~ 2 logy Mnodes
Horovod periodically checks for finished parts of the gradient. It will then start transferring if a

threshold is exceeded.

time
_

(@) (@] (@] @] (@]
o (e} o (@] (o]
3 3 3 3 3
© © © © ©
= = = = =
D D (0] (0] D

Jajsuel|

lajsuel|
Jajsuel|
Jajsuel|
Jajsuel|

HOROVOD TIMELINE

Record | Save | Load | testjson

[View Options | ==
CPU usage lrezeoms Lsaon linroom Jinsomg o] T
N g
() 7
+
12 =
- gradonts AdON. (4 1 s H
v _gradonts_AdON.1 0 (332

z
. gradents_AddN_2_0 (pd 3 g

ALLREDUCE
- [wam_ronomen Tensoroara | INSCHECIEENY || No- | M/

- gradents_AddN_3.0 i\u — §
>

|
»_gradients_AddN_4_0 (pid 5)

1 item selected. | Sice (1)

Tite ALLREDUCE
User Friendly Category other
n 18,663,501
ms
Wall Duration 184,063 ms
Sell Time 5998 ms
vAgs
dype "floac”
shape (2048

= Horovod Timeline: Get a timeline of transfers

= Easy to use: horovodrun -np 4 -timeline-filename /path/to/timeline.json python
train.py

= Open with chrome tracing.

TENSORBOARD PROFILER

Vectorized map

Open

Read

Map

—
-

Epoch

time (s)

Start with ssh tunnel in a single command on the login node:

ssh -L 8889:localhost:53415 kesselheiml@juwels.fz-juelich.de "bash -c \"source /p/project/
training2004/course2021_working_environment/activate.sh && tensorboard --port 53415 --
logdir /p/project/training2004/kesselheimi/ \" "

Navigate to http://localhost:8889
Please change remote port from 53415 to you favourite random number above 1024.

	Performance of Deep Learning
	Building IO Pipelines

