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DISTRIBUTED TRAINING ON LARGE DATA

= ImageNet-1k : still gold standard in training large visual recognition models
= Serves as “Hello World” for large dataset training
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MNIST, CIFAR-10/100
28x28, 32x32; 60k examples

ImageNet-1k, 21k; Openlmages, FFHQ...
224x224, 1024x1024; 1.2M examples



DISTRIBUTED TRAINING ON LARGE DATA

= ImageNet-1k : still gold standard in training large visual recognition models
= ResNet-50 : baseline model network, test accuracies : ~ 75% top-1, ~ 94% top-5 (Winner
ILSVRC 2015)

Image classification
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DISTRIBUTED TRAINING ON LARGE DATA

= ResNet-50 : efficient distributed training in data parallel mode possible

= prerequisite is good scaling of throughput during training
= image throughput during training ideally increasing as 7« = K - 7. Images/sec
= training with a large effective batch size |B| = K - |Byei|, K workers
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DISTRIBUTED TRAINING ON LARGE DATA

= ResNet-50 : efficient distributed training in data parallel mode

= High test accuracy in the end of the training is the goal

Batch Processor DL Time Accuracy

Size Library
He et al. [1] 256 Tesla P100 x 8 Caffe 29 hours 75.3 %
Goyal et al. [2] 8,192 Tesla P100 x 256 Caffe2 1 hour 76.3 %
Smith et al. [3] 8,192 — 16,384 full TPU Pod TensorFlow 30 mins 76.1 %
Akiba et al. [4] 32,768 Tesla P100 x 1,024 Chainer 15 mins 74.9 %
Jia et al. [5] 65,536 Tesla P40 x 2,048 TensorFlow 6.6 mins 75.8 %
Ying et al. [6] 65,536 TPU v3 x 1,024 TensorFlow 1.8 mins 75.2 %
Mikami et al. [7] 55,296 Tesla V100 x 3,456 NNL 2.0 mins 75.29 %
This work 81,920 Tesla V100 x 2,048 MXNet 1.2 mins  75.08%

Yamazoto et al, 2019; Ying, 2018

ResNet-50 training on ImageNet
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DISTRIBUTED TRAINING ON LARGE DATA

= Data parallel training: working with large effective batch sizes
= Reminder: Training with |B| = K - | Bet|, K workers
= Large effective batch sizes alter model optimization trajectory
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DISTRIBUTED TRAINING ON LARGE DATA

= Data parallel training: working with large effective batch sizes
= Training with |B| = K - |B|, K workers
= Large effective batch sizes alter model optimization trajectory

= may require hyperparameter re-tuning compared to a working smaller batch (single node) version
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DISTRIBUTED TRAINING ON LARGE DATA

= ResNet-50 : efficient distributed training in data parallel mode

= for very large batch sizes |%B|: diminishing speed-up returns when training towards a given test

accuracy
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DISTRIBUTED TRAINING ON LARGE DATA

= Critical large batch sizes |Bit|: diminishing speed-up when crossing, given target test
accuracy
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DISTRIBUTED TRAINING ON LARGE DATA

= Critical large batch sizes |Bit|: systematic evidence across datasets, tasks and architectures
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DISTRIBUTED TRAINING ON LARGE DATA

= Critical large batch sizes |Bit|: large enough to do efficient distributed training
» Efficient Distributed Training with |2B| = K - | B/, for large K

= providing almost linear training speed up, ty = ‘72‘5
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DISTRIBUTED TRAINING ON LARGE DATA

m Efficient Distributed Training with |B| = K - | B, for large K
= Providing almost linear training speed up, ty = %tg, without loss of test accuracy
= Important: reducing training time to accuracy - time to solution

= strong scaling : reducing time to accuracy

= reducing time per update step, per epoch, increasing samples throughput - alone not sufficient for
speeding-up, reducing time to accuracy!

= doing “bad” update steps during training would require doing a lot of them before reaching target
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DISTRIBUTED TRAINING ON LARGE DATA

» Efficient Distributed Training with |B| = K - | B/, for large K

= Still debated whether hyperparameters tuning may allow for even larger batch sizes while still

reducing time to accuracy
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DISTRIBUTED TRAINING ON IMAGENET

» Efficient Distributed Training with |B| = K - | B/, for large K
= Combating accuracy loss when using larger batch sizes: hyperparameter tuning
= Reducing time to accuracy with target accuracy equal to a working smaller batch (single

node) reference
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DISTRIBUTED TRAINING ON IMAGENET

= Combating accuracy loss when using larger batch sizes: hyperparameter tuning
= Learning rate rescaling with respect to |B| and | By|
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COMBATING ACCURACY LOSS ON IMAGENET

m | earning rate rescaling: motivation to match weight updates for different batch sizes |5/, | Byl
IB] = K - | Bret|
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COMBATING ACCURACY LOSS ON IMAGENET

= Learning rate rescaling: motivation to match weight updates for different batch sizes,
|B| = K - [Bret|

= increase the weight update step size to accommodate for the fewer number of update steps when
having a larger batch size

K update steps of SGD with learning rate n and |Bet| = n:
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Goyal et al, 2017



COMBATING ACCURACY LOSS ON IMAGENET

= Learning rate: linear rescaling, 7 = Kn, for [B| = K - | Biei]

Toget Wi =~ We ik,
we assume VL(X,W;) =~ VL(X,Wy;) forj < K
and obtain
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COMBATING ACCURACY LOSS ON IMAGENET

= Learning rate: linear rescaling, 7 = Kn, for |B| = K - | Biei]
= used in combination with usual learning rate schedules
= VL(X,W;) =~ VL(X,W,y,) for j < K does not hold in general

= especially wrong for initial learning phase where gradients vary a lot from step to step
= A possible remedy: initial warm-up phase
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COMBATING ACCURACY LOSS ON IMAGENET

= Learning rate: linear rescaling, 7 = Kn, for [B| = K - | Biei]
= used in combination with usual learning rate schedules

= VL(X,W;) = VL(X,W;y) for j < K is bad assumption for early learning
= Warm-up phase: start with ), increase towards scaled 7} = Kn within few epochs
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COMBATING ACCURACY LOSS ON IMAGENET

= Learning rate tuning: package of mechanisms

= linear rescaling
= Warm-up for initial epochs
= Schedules
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COMBATING ACCURACY LOSS ON IMAGENET

= Learning rate tuning: package of mechanisms
= Often, still not enough for very large batch sizes |8| > 8192
= Advanced Optimizers that provide further adaptive hyperparamer tuning during training
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COMBATING ACCURACY LOSS ON IMAGENET

= Advanced optimizers that provide further adaptive hyperparamer tuning during training: very
large batch sizes |B| > 8192
= LARS : Layer-wise Adaptive Rate Scaling, extension of SGD with momentum

= tuning learning rates layerwise depending on gradient and weight amplitudes and norms
= LAMB : Layer Adaptive Moment Batch, extension of LARS (use AdamW as base)
= tuning learning rate layerwise, also per weight parameter using gradient mean and variance

ImageNet/ResNet-50 (Batch Size=32K, 90 epochs)
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You et al, ICLR, 2020



COMBATING ACCURACY LOSS ON IMAGENET

= | earning rate rescaling, schedules and Warm up : works well for |%B| < 8192)
= Advanced optimizers (LAMB) : works for |28| < 80k)
= Almost linear speed-up in training time without accuracy loss: reducing time to accuracy

Hardware Software Batch size Optimizer # Steps  Time/step Time Accuracy
Goyal et al. [6] Tesla P100 x 256 Caffe2 8,192 SGD 14,076 0.255 s 1hr 76.3 %
You et al. [8] KNL x 2048 Intel Caffe 32,768 SGD 3,519 0.341 s 20 min 75.4 %
Akiba et al. [7] Tesla P100 x 1024 Chainer 32,768  RMSprop/SGD 3,519 0.255 s 15 min 74.9 %
You et al. [8] KNL x 2048 Intel Caffe 32,768 SGD 2,503 0.335 s 14 min 74.9 %
Jia et al. [9] Tesla P40 x 2048  TensorFlow 65,536 SGD 1,800 0220s 6.6 min 75.8 %
Ying et al. [13] TPU v3 x 1024 TensorFlow 32,768 SGD 3,519 0.037 s 2.2 min 76.3 %
Mikami et al. [10] Tesla V100 x 3456 NNL 55,296 SGD 2,086 0.057 s 2.0 min 75.3 %
Yamazaki et al. [11]  Tesla V100 x 2048 MXNet 81,920 SGD 1,440 0.050 s 1.2 min 75.1 %

Osawa et al, 2020



DISTRIBUTED TRAINING WITH LARGE BATCHES

More advanced techniques may allow efficient distributed training beyond batch size issues
Local SGD: giving up consistency between model parameters across different workers after

each update

Post Local SGD: combining coupled global SGD and decoupled local SGD
Natural SGD: attempt to use second derivatives and curvature information

Forward pass: activations f(.X: W)
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DISTRIBUTED TRAINING WITH LARGE BATCHES

Summary

Efficient data parallel training on large datasets like ImageNet-1k
Measures to stabilize training with large batches necessary

Learning rate scaling, schedules, warm-up phase, specialized optimizers
Advanced methods required for very large |B| > 32k

= Aim: reduce time to accuracy without accuracy loss
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