

DAY 4: DISTRIBUTED TRAINING ON LARGE DATA Combating Accuracy Loss

2021-02-04 | Jenia Jitsev | Cross Sectional Team Deep Learning, Helmholtz Al @ JSC

- ImageNet-1k: still gold standard in training large visual recognition models
- Serves as "Hello World" for large dataset training

MNIST, CIFAR-10/100 28x28, 32x32; 60k examples

ImageNet-1k, 21k; OpenImages, FFHQ... 224x224, 1024x1024; 1.2M examples

- ImageNet-1k: still gold standard in training large visual recognition models
- ResNet-50 : baseline model network, test accuracies : \approx 75% top-1, \approx 94% top-5 (Winner ILSVRC 2015)

- ResNet-50: efficient distributed training in data parallel mode possible
 - prerequisite is good scaling of throughput during training
 - image throughput during training ideally increasing as $\tau_K = K \cdot \tau_{ref}$ Images/sec
 - \blacksquare training with a large effective batch size $|\mathfrak{B}| = K \cdot |\textit{B}_{\text{ref}}|, \, \textit{K}$ workers

- ResNet-50: efficient distributed training in data parallel mode
 - High test accuracy in the end of the training is the goal

	Batch	Processor	DL	Time	Accuracy
	Size		Library		
He et al. [1]	256	Tesla P100 × 8	Caffe	29 hours	75.3 %
Goyal et al. [2]	8,192	Tesla P100 \times 256	Caffe2	1 hour	76.3 %
Smith et al. [3]	$8,192 \rightarrow 16,384$	full TPU Pod	TensorFlow	30 mins	76.1 %
Akiba et al. [4]	32,768	Tesla P100 × 1,024	Chainer	15 mins	74.9 %
Jia et al. [5]	65,536	Tesla P40 × 2,048	TensorFlow	6.6 mins	75.8 %
Ying et al. [6]	65,536	TPU v3 \times 1,024	TensorFlow	1.8 mins	75.2 %
Mikami et al. [7]	55,296	Tesla V100 × 3,456	NNL	2.0 mins	75.29 %
This work	81,920	Tesla V100 × 2,048	MXNet	1.2 mins	75.08%

- Data parallel training: working with large effective batch sizes
- Reminder: Training with $|\mathfrak{B}| = K \cdot |B_{ref}|$, K workers
- Large effective batch sizes alter model optimization trajectory

- Data parallel training: working with large effective batch sizes
- Training with $|\mathfrak{B}| = K \cdot |B_{ref}|$, K workers
- Large effective batch sizes alter model optimization trajectory
 - may require hyperparameter re-tuning compared to a working smaller batch (single node) version

- ResNet-50: efficient distributed training in data parallel mode
 - for very large batch sizes |B|: diminishing speed-up returns when training towards a given test accuracy

■ Critical large batch sizes |𝔻_{crit}|: diminishing speed-up when crossing, given target test accuracy

ResNet-8, CIFAR-10

ResNet-50, ImageNet-1k

ResNet-50, OpenImages

ullet Critical large batch sizes $|\mathfrak{B}_{\text{crit}}|$: systematic evidence across datasets, tasks and architectures

- Critical large batch sizes |Bcrit|: large enough to do efficient distributed training
- Efficient Distributed Training with $|\mathfrak{B}| = K \cdot |B_{ref}|$, for large K
 - providing almost linear training speed up, $t_{\mathfrak{B}} = \frac{1}{K}t_{B}$

ResNet-8, CIFAR-10

ResNet-50, ImageNet-1k

ResNet-50, OpenImages

- Efficient Distributed Training with $|\mathfrak{B}| = K \cdot |B_{ref}|$, for large K
- Providing almost linear training speed up, $t_{\mathfrak{B}} = \frac{1}{K}t_{B}$, without loss of test accuracy
- Important: reducing training time to accuracy time to solution
 - strong scaling : reducing time to accuracy
 - reducing time per update step, per epoch, increasing samples throughput alone not sufficient for speeding-up, reducing time to accuracy!
 - doing "bad" update steps during training would require doing a lot of them before reaching target loss/accuracy . . .

- Efficient Distributed Training with $|\mathfrak{B}| = K \cdot |B_{ref}|$, for large K
- Still debated whether hyperparameters tuning may allow for even larger batch sizes while still reducing time to accuracy

(a) Simple CNN on MNIST

(b) Transformer on LM1B

(c) ResNet-8 on CIFAR-10

DISTRIBUTED TRAINING ON IMAGENET

- Efficient Distributed Training with $|\mathfrak{B}| = K \cdot |B_{ref}|$, for large K
- Combating accuracy loss when using larger batch sizes: hyperparameter tuning
- Reducing time to accuracy with target accuracy equal to a working smaller batch (single node) reference

DISTRIBUTED TRAINING ON IMAGENET

- Combating accuracy loss when using larger batch sizes: hyperparameter tuning
- Learning rate rescaling with respect to $|\mathfrak{B}|$ and $|B_{ref}|$

■ Learning rate rescaling: motivation to match weight updates for different batch sizes $|\mathfrak{B}|$, $|\mathcal{B}_{ref}|$, $|\mathfrak{B}| = K \cdot |\mathcal{B}_{ref}|$

- Learning rate rescaling: motivation to match weight updates for different batch sizes, $|\mathfrak{B}| = K \cdot |B_{ref}|$
 - increase the weight update step size to accommodate for the fewer number of update steps when having a larger batch size

K update steps of SGD with learning rate η and $|B_{ref}| = n$:

$$\mathbf{W}_{t+K} = \mathbf{W}_t - \underbrace{\eta \frac{1}{n}}_{j < K} \sum_{X \in \mathcal{B}_j} \nabla \underbrace{\mathcal{L}(X, \mathbf{W}_{t+j})}_{}$$

Single update step with $|\mathfrak{B}| = Kn$, learning rate $\hat{\eta}$

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \widehat{\eta} \frac{1}{Kn} \sum_{j < K} \sum_{X \in B_j} \nabla \underbrace{\mathcal{L}(X, \mathbf{W}_t)}_{t}$$

Goyal et al, 2017

■ Learning rate: linear rescaling, $\hat{\eta} = K\eta$, for $|\mathfrak{B}| = K \cdot |B_{\text{ref}}|$

To get $\mathbf{W}_{t+1} \approx \mathbf{W}_{t+K}$,

we assume $\nabla \mathcal{L}(X, \mathbf{W}_t) \approx \nabla \mathcal{L}(X, \mathbf{W}_{t+j})$ for j < K and obtain

$$\hat{\eta} \frac{1}{kn} = \eta \frac{1}{n} \Leftrightarrow \hat{\eta} = \frac{kn}{n} \eta \Leftrightarrow \hat{\eta} = K\eta$$

Goyal et al, 2017

- Learning rate: linear rescaling, $\hat{\eta} = K\eta$, for $|\mathfrak{B}| = K \cdot |B_{ref}|$
 - used in combination with usual learning rate schedules
- $\nabla \mathcal{L}(X, \mathbf{W}_t) \approx \nabla \mathcal{L}(X, \mathbf{W}_{t+j})$ for j < K does not hold in general
 - especially wrong for initial learning phase where gradients vary a lot from step to step
 - A possible remedy: initial warm-up phase

- Learning rate: linear rescaling, $\hat{\eta} = K\eta$, for $|\mathfrak{B}| = K \cdot |B_{ref}|$
 - used in combination with usual learning rate schedules
- $\nabla \mathcal{L}(X, \mathbf{W}_t) \approx \nabla \mathcal{L}(X, \mathbf{W}_{t+j})$ for j < K is bad assumption for early learning
- Warm-up phase: start with η , increase towards scaled $\hat{\eta} = K\eta$ within few epochs

- Learning rate tuning: package of mechanisms
 - linear rescaling
 - Warm-up for initial epochs
 - Schedules

- Learning rate tuning: package of mechanisms
- \blacksquare Often, still not enough for very large batch sizes $|\mathfrak{B}|>8192$
- Advanced Optimizers that provide further adaptive hyperparamer tuning during training

- Advanced optimizers that provide further adaptive hyperparamer tuning during training: very large batch sizes $|\mathfrak{B}| > 8192$
- LARS: Layer-wise Adaptive Rate Scaling, extension of SGD with momentum
 - tuning learning rates layerwise depending on gradient and weight amplitudes and norms
- LAMB: Layer Adaptive Moment Batch, extension of LARS (use AdamW as base)
 - tuning learning rate layerwise, also per weight parameter using gradient mean and variance

- Learning rate rescaling, schedules and Warm up : works well for $|\mathfrak{B}| \leq 8192$)
- Advanced optimizers (LAMB) : works for $|\mathfrak{B}| \leq 80k$)
- Almost linear speed-up in training time without accuracy loss: reducing time to accuracy

	Hardware	Software	Batch size	Optimizer	# Steps	Time/step	Time	Accuracy
Goyal et al. [6]	Tesla P100 \times 256	Caffe2	8,192	SGD	14,076	0.255 s	1 hr	76.3 %
You et al. [8]	$KNL \times 2048$	Intel Caffe	32,768	SGD	3,519	$0.341 \; s$	20 min	75.4 %
Akiba et al. [7]	Tesla P100 \times 1024	Chainer	32,768	RMSprop/SGD	3,519	$0.255 \; s$	15 min	74.9 %
You et al. [8]	$KNL \times 2048$	Intel Caffe	32,768	SGD	2,503	0.335 s	14 min	74.9 %
Jia <i>et al</i> . [9]	Tesla P 40×2048	TensorFlow	65,536	SGD	1,800	$0.220 \; s$	6.6 min	75.8 %
Ying <i>et al.</i> [13]	TPU v3 \times 1024	TensorFlow	32,768	SGD	3,519	0.037 s	2.2 min	76.3 %
Mikami et al. [10]	Tesla V100 \times 3456	NNL	55,296	SGD	2,086	0.057 s	2.0 min	75.3 %
Yamazaki et al. [11]	Tesla V100 \times 2048	MXNet	81,920	SGD	1,440	$0.050 \mathrm{\ s}$	1.2 min	75.1 %

DISTRIBUTED TRAINING WITH LARGE BATCHES

- More advanced techniques may allow efficient distributed training beyond batch size issues
- Local SGD: giving up consistency between model parameters across different workers after each update
- Post Local SGD: combining coupled global SGD and decoupled local SGD
- Natural SGD: attempt to use second derivatives and curvature information

DISTRIBUTED TRAINING WITH LARGE BATCHES

Summary

- Efficient data parallel training on large datasets like ImageNet-1k
- Measures to stabilize training with large batches necessary
- Learning rate scaling, schedules, warm-up phase, specialized optimizers
- Advanced methods required for very large $|\mathfrak{B}| \geq 32k$
- Aim: reduce time to accuracy without accuracy loss

