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DISTRIBUTED TRAINING ON VERY LARGE DATA

= ImageNet-1k : still test bench for data parallel distributed training
= Substantial speed up with data parallel mode without test accuracy loss
= Requires hyperparameter tuning to adapt training for larger batch sizes

Hardware Software Batch size Optimizer # Steps  Time/step Time Accuracy
Goyal et al. [6] Tesla P100 x 256 Caffe2 8,192 SGD 14,076 0.255 s 1hr 76.3 %
You et al. [8] KNL x 2048 Intel Caffe 32,768 SGD 3,519 0.341 s 20 min 75.4 %
Akiba et al. [7] Tesla P100 x 1024 Chainer 32,768  RMSprop/SGD 3,519 0.255 s 15 min 74.9 %
You et al. [8] KNL x 2048 Intel Caffe 32,768 SGD 2,503 0.335 s 14 min 74.9 %
Jia et al. [9] Tesla P40 x 2048  TensorFlow 65,536 SGD 1,800 0220s 6.6 min 75.8 %
Ying et al. [13] TPU v3 x 1024 TensorFlow 32,768 SGD 3,519 0.037 s 2.2 min 76.3 %
Mikami et al. [10] Tesla V100 x 3456 NNL 55,296 SGD 2,086 0.057 s 2.0 min 75.3 %
Yamazaki et al. [11]  Tesla V100 x 2048 MXNet 81,920 SGD 1,440 0.050 s 1.2 min 75.1 %

Osawa et al, 2020



DISTRIBUTED TRAINING ON VERY LARGE DATA

= Requires a package of measures to deal with large batch sizes
= | earning rate scaling, schedules, warm-up, optimizers, ...
= Often heuristics for specific scenarios
= ImageNet-1k is getting rusty: Larger, more diverse datasets upcoming

= ImageNet-21k: 14x larger; JFT-300M: 300x larger, ...
= able to further increase worker size to train efficiently in data parallel mode?
= Reminder: data parallel training with |B| = K - | B.|, K workers, large batch sizes
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Scaling Laws: larger models further improve generalization, especially when given enough
data and compute
= This seems to be valid across different datasets and training scenarios

= image, text; unsupervised learning, reinforcement learning
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Scaling Laws: increasing model size requires (modest) increase in data and batch size to
achieve better test loss (generalization)
= [ncreasing batch size : is there a limit?
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Critical batch sizes |B.;|: optimal batch size to train on, almost linear speed-up for time to

accuracy

= |B| > |Bei| : diminishing speed up returns, wasting additional compute
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Critical batch sizes |B;;|: optimal batch size to train on
m B existence across different datasets and training scenarios

= image, text; unsupervised learning, reinforcement learning
= measures like gradient noise scale (gradient variance estimate) may provide estimate for |B |
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Critical batch sizes |B;;|: optimal batch size to train on
m Still debated whether |B| in turn depends on training hyperparameters
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Large batch sizes |B| for efficient data parallel training

= Hyperparameter tuning for each |B|: no simple scheme for derivation from a reference |B,f|

(e.g rescaling)
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Alternative data parallel schemes that do not rely on increasing %8| with number of workers K
= | ocal SGD: giving up consistency between model parameters across different workers after
each update

= run local mini-batch SGD without increasing effective global batch size
= Post Local SGD: combining coupled global SGD and decoupled local SGD
= usual global batch SGD in early training phase, decoupled local SGD with occasional syncing in
later phase (Li et al, ICLR, 2020)
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Growing data: labeled data?
= ImageNet-21k : 21k classes with labels, 14x larger than ImageNet-1k
= JFT-300M : = 18K classes, noisy labels, 300x larger than ImageNet-1k
= Still supervised training
= Evidence for strong transfer learning performance when using large networks
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Growing data: labeled data
= Supervised training on very large datasets
= Evidence for strong transfer learning performance when using large networks

= Performance increase only evident after many epochs - 8 GPU-months until seeing progress
reported! (after 8 GPU weeks - learning seemingly stalled)
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Growing data: labeled data
= Supervised training on very large datasets

= Performance increase only evident after many epochs - 8 GPU-months until seeing progress
= Data parallel training: ~ 5.625 hours on 1024 GPUs (if scaling goes very well)

Downstream dataset: ILSVRC-2012
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Growing data: unlabeled data
= Unsupervised learning in different flavors

= human-made labels not required
= Often, using auxiliary tasks - self-supervised learning

= contrastive losses (SImCLR), reconstruction based losses (eg VAEs), ...
= adversarial losses (eg. GANs -> see Day 5 Speciall)
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Growing data: unlabeled data
= Contrastive losses: construct losses from transformed pairs of inputs
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Growing data: unlabeled data
= Contrastive losses: larger models do better unsupervised learning!
= Evidence for better representations in larger networks after unsupervised training
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Growing data: unlabeled data

= Contrastive losses: larger models do better unsupervised learning!

= Evidence for better transfer learning when using only very few labels

= Single training run: 128 TPU v3, 1.5 hours for a (small) ResNet-50 (25M weights)
= batch size 4096, 100 Epochs;
= |earning rate rescaling, schedule & LARS optimizer
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DISTRIBUTED TRAINING ON VERY LARGE DATA

= Neural Architecture Search: training thousands of different networks to find a strong
architecture for a (set of) tasks

= May use either supervised or unsupervised training for each candidate network
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DISTRIBUTED TRAINING WITH VERY LARGE MODELS

= Growing models: only data parallel scheme not sufficient
= Language Modelling: GPT 3 - 175 Billion parameters; Switch Transformers (Google) - over 1 Trillion

parameters . ..

= Model parallelism, Pipeline Parallelism: can split a very large model across accelerators
m Different libraries: DeepSpeed (Microsoft), HyPar-Flow, Mesh TensorFlow, Tarantella
(Fraunhofer), HeAT (Helmholtz - KIT/JSC), ...
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DISTRIBUTED TRAINING WITH VERY LARGE MODELS

= Upcoming: hybrid parallel schemes

= using data, model and pipeline parallelism simultaneously
= Distributed training that combines memory and compute efficiency
= DeepSpeed: supports hybrid parallelism
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DISTRIBUTED TRAINING WITH VERY LARGE MODELS

= Upcoming: hybrid parallel schemes
= using data, model and pipeline parallelism simultaneously
= DeepSpeed: “3D Parallelism”
= executing and speeding up a Trillion size model on 800 A100 GPUs
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DISTRIBUTED TRAINING WITH VERY LARGE MODELS

= Upcoming: local updates, decoupled gradients

= Getting rid of global forward-backward pass dependency alltogether
= Asynchronous local updates, highly beneficial for parallelization

= Towards “truly” neuromorphic design, in-memory computing

= New generic losses for unsupervised learning

= [|=[]|=
Sof=0=0-]) =

{H} Layer 2
Global loss, forward-backward passes locked

Local losses, forward-backward passes decoupled

=-0-0-0-0 -

" W8

I U
[ Loss ] [ Loss ] [ Loss H Loss ] Backward

Laskin et al, 2020



DISTRIBUTED TRAINING WITH VERY LARGE MODELS

= Upcoming: local updates, decoupled gradients
= Asynchronous local updates, highly beneficial for parallelization
= Energy efficient distributed training on specialized hardware, in-memory computing

= Graphcore IPU: Colossus Mk2
= Cerebras : Wafer Scale Engine 2 (WSE - 850k Cores!)
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DISTRIBUTED TRAINING: BEGINNING OF A JOURNEY

= Large Scale Learning in Simulated Environments

= Distributed Reinforcement Learning: Data Selection and Generation in the Loop
= Differentiable simulators integrated into learning loop - physics-based regularization and learning

= Modular Supercomputing containing different accelerator types
= Modular Supercomputers are designed at JSC
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DISTRIBUTED TRAINING: BEGINNING OF A JOURNEY

Large-scale distributed training for transfer on smaller datasets
Large-scale self-supervised learning with auxiliary tasks

Training of very large models with hybrid parallelism

Energy efficient large scale learning with neuromorphic hardware
Distributed reinforcement learning, simulators in the learning loop
Modular Supercomputers




DISTRIBUTED TRAINING: ACTIVITIES AT JSC

= COVIDNetX: Large-Scale Distributed Training for Transfer Learning

= Cross-Sectional Team Deep Learning (CST-DL) & Helmholtz Al Consultants Team (HLST)
= https://tinyurl.com/CovidNetXHelmholtz

= SunGAN: Distributed GAN Training for Generating High Resolution Solar Observations
= GFZ Potsdam & JSC, CST-DL & Helmholtz Al HLST

= HeAT (Helmholtz Analytics Toolkit): numPy for MPI, large-scale generic tensor computing
= https://github.com/helmholtz-analytics/heat/

= Modular Supercomputers : JUWELS & JUWELS Booster, more to come




DISTRIBUTED TRAINING: ACTIVITIES AT JSC

= Distributed Training for Hyperspectral Remote Sensing
= Helmholtz Al Research Group at INM-1: distributed deep learning for neuroimaging
= Juelich Data Sets Challenge : Platform for collaborative datasets and model training

= CST-DL & Helmholtz Al HLST: https://data-challenges.fz-juelich.de/

= TOAR: Earth System Data Exploration (ESDE) Lab
= JULAIN: Juelich Artificial Intelligence Network, join in!

= mailing list: https:/lists.fz-juelich.de/mailman/listinfo/ml




