

DAY 4 : OUTLOOK Advanced Distributed Training

2021-02-04 \mid Jenia Jitsev \mid Cross Sectional Team Deep Learning, Helmholtz Al @ JSC

- ImageNet-1k: still test bench for data parallel distributed training
- Substantial speed up with data parallel mode without test accuracy loss
- Requires hyperparameter tuning to adapt training for larger batch sizes

	Hardware	Software	Batch size	Optimizer	# Steps	Time/step	Time	Accuracy
Goyal et al. [6]	Tesla P100 \times 256	Caffe2	8,192	SGD	14,076	0.255 s	1 hr	76.3 %
You et al. [8]	$KNL \times 2048$	Intel Caffe	32,768	SGD	3,519	$0.341 \mathrm{\ s}$	20 min	75.4 %
Akiba et al. [7]	Tesla P 100×1024	Chainer	32,768	RMSprop/SGD	3,519	$0.255 \; s$	15 min	74.9 %
You et al. [8]	$KNL \times 2048$	Intel Caffe	32,768	SGD	2,503	0.335 s	14 min	74.9 %
Jia <i>et al.</i> [9]	Tesla P 40×2048	TensorFlow	65,536	SGD	1,800	$0.220 \; s$	6.6 min	75.8 %
Ying <i>et al.</i> [13]	TPU v3 \times 1024	TensorFlow	32,768	SGD	3,519	0.037 s	2.2 min	76.3 %
Mikami et al. [10]	Tesla V100 \times 3456	NNL	55,296	SGD	2,086	$0.057 \; s$	2.0 min	75.3 %
Yamazaki <i>et al.</i> [11]	Tesla V100 \times 2048	MXNet	81,920	SGD	1,440	$0.050 \mathrm{\ s}$	1.2 min	75.1 %

- Requires a package of measures to deal with large batch sizes
 - Learning rate scaling, schedules, warm-up, optimizers, ...
 - Often heuristics for specific scenarios
- ImageNet-1k is getting rusty: Larger, more diverse datasets upcoming
 - ImageNet-21k: 14x larger; JFT-300M: 300x larger, . . .
 - able to further increase worker size to train efficiently in data parallel mode?
 - Reminder: data parallel training with $|\mathfrak{B}| = K \cdot |B_{ref}|$, K workers, large batch sizes

- Scaling Laws: larger models further improve generalization, especially when given enough data and compute
- This seems to be valid across different datasets and training scenarios
 - image, text; unsupervised learning, reinforcement learning

- Scaling Laws: increasing model size requires (modest) increase in data and batch size to achieve better test loss (generalization)
- Increasing batch size : is there a limit?

- Critical batch sizes |B_{crit}|: optimal batch size to train on, almost linear speed-up for time to accuracy
 - $|\mathfrak{B}| > |\mathfrak{B}_{crit}|$: diminishing speed up returns, wasting additional compute

ResNet-8, CIFAR-10

ResNet-50, ImageNet-1k

ResNet-50, OpenImages

- Critical batch sizes $|\mathfrak{B}_{crit}|$: optimal batch size to train on
- $\blacksquare \ |\mathfrak{B}_{\textit{crit}}|$ existence across different datasets and training scenarios
 - image, text; unsupervised learning, reinforcement learning
 - measures like gradient noise scale (gradient variance estimate) may provide estimate for |𝔻_{crit}|

- Critical batch sizes $|\mathfrak{B}_{crit}|$: optimal batch size to train on
- ullet Still debated whether $|\mathfrak{B}_{\textit{crit}}|$ in turn depends on training hyperparameters

(a) Simple CNN on MNIST

(b) Transformer on LM1B

(c) ResNet-8 on CIFAR-10

- Large batch sizes |𝔄| for efficient data parallel training
- Hyperparameter tuning for each $|\mathfrak{B}|$: no simple scheme for derivation from a reference $|B_{ref}|$ (e.g rescaling)

Transformer, Common Crawl

- Alternative data parallel schemes that do not rely on increasing $|\mathfrak{B}|$ with number of workers K
- Local SGD: giving up consistency between model parameters across different workers after each update
 - run local mini-batch SGD without increasing effective global batch size
- Post Local SGD: combining coupled global SGD and decoupled local SGD
 - usual global batch SGD in early training phase, decoupled local SGD with occasional syncing in later phase (Li et al, ICLR, 2020)

- Growing data: labeled data?
- ImageNet-21k: 21k classes with labels, 14x larger than ImageNet-1k
- JFT-300M : ≈ 18K classes, noisy labels, 300x larger than ImageNet-1k
- Still supervised training
 - Evidence for strong transfer learning performance when using large networks

- Growing data: labeled data
- Supervised training on very large datasets
 - Evidence for strong transfer learning performance when using large networks
 - Performance increase only evident after many epochs 8 GPU-months until seeing progress reported! (after 8 GPU weeks - learning seemingly stalled)

- Growing data: labeled data
- Supervised training on very large datasets
 - Performance increase only evident after many epochs 8 GPU-months until seeing progress
 - \blacksquare Data parallel training: \approx 5.625 hours on 1024 GPUs (if scaling goes very well)

- Growing data: unlabeled data
- Unsupervised learning in different flavors
 - human-made labels not required
- Often, using auxiliary tasks self-supervised learning
 - contrastive losses (SimCLR), reconstruction based losses (eg VAEs), . . .
 - adversarial losses (eg. GANs -> see Day 5 Special!)

- Growing data: unlabeled data
- Contrastive losses: construct losses from transformed pairs of inputs

$$\mathbf{z}_i = g(\mathbf{h}_i), \quad \mathbf{z}_j = g(\mathbf{h}_j), \quad \sin(\mathbf{z}_i, \mathbf{z}_j) = \frac{\mathbf{z}_i^{\top} \mathbf{z}_j}{\|\mathbf{z}_i\| \|\mathbf{z}_j\|}$$

$$\mathcal{L}_{i,j} = -\log \frac{\exp(\sin(\mathbf{z}_i, \mathbf{z}_j)/ au)}{\sum_{k=1}^{2n} \mathbf{1}_{[k
eq i]} \exp(\sin(\mathbf{z}_i, \mathbf{z}_k)/ au)}$$

- Growing data: unlabeled data
- Contrastive losses: larger models do better unsupervised learning!
- Evidence for better representations in larger networks after unsupervised training

- Growing data: unlabeled data
- Contrastive losses: larger models do better unsupervised learning!
- Evidence for better transfer learning when using only very few labels
- Single training run: 128 TPU v3, 1.5 hours for a (small) ResNet-50 (25M weights)
 - batch size 4096, 100 Epochs;
 - learning rate rescaling, schedule & LARS optimizer

- Neural Architecture Search: training thousands of different networks to find a strong architecture for a (set of) tasks
- May use either supervised or unsupervised training for each candidate network

- Growing models: only data parallel scheme not sufficient
 - Language Modelling: GPT 3 175 Billion parameters; Switch Transformers (Google) over 1 Trillion parameters . . .
- Model parallelism, Pipeline Parallelism: can split a very large model across accelerators
- Different libraries: DeepSpeed (Microsoft), HyPar-Flow, Mesh TensorFlow, Tarantella (Fraunhofer), HeAT (Helmholtz - KIT/JSC), . . .

- Upcoming: hybrid parallel schemes
 - using data, model and pipeline parallelism simultaneously
- Distributed training that combines memory and compute efficiency
- DeepSpeed: supports hybrid parallelism

- Upcoming: hybrid parallel schemes
 - using data, model and pipeline parallelism simultaneously
- DeepSpeed: "3D Parallelism"
 - executing and speeding up a Trillion size model on 800 A100 GPUs

- Upcoming: local updates, decoupled gradients
- Getting rid of global forward-backward pass dependency alltogether
- Asynchronous local updates, highly beneficial for parallelization
- Towards "truly" neuromorphic design, in-memory computing
- New generic losses for unsupervised learning

- Upcoming: local updates, decoupled gradients
- Asynchronous local updates, highly beneficial for parallelization
- Energy efficient distributed training on specialized hardware, in-memory computing
 - Graphcore IPU: Colossus Mk2
 - Cerebras : Wafer Scale Engine 2 (WSE 850k Cores!)

DISTRIBUTED TRAINING: BEGINNING OF A JOURNEY

- Large Scale Learning in Simulated Environments
 - Distributed Reinforcement Learning: Data Selection and Generation in the Loop
 - Differentiable simulators integrated into learning loop physics-based regularization and learning
- Modular Supercomputing containing different accelerator types
 - Modular Supercomputers are designed at JSC

DISTRIBUTED TRAINING: BEGINNING OF A JOURNEY

Outlook

- Large-scale distributed training for transfer on smaller datasets
- Large-scale self-supervised learning with auxiliary tasks
- Training of very large models with hybrid parallelism
- Energy efficient large scale learning with neuromorphic hardware
- Distributed reinforcement learning, simulators in the learning loop
- Modular Supercomputers

DISTRIBUTED TRAINING: ACTIVITIES AT JSC

- COVIDNetX: Large-Scale Distributed Training for Transfer Learning
 - Cross-Sectional Team Deep Learning (CST-DL) & Helmholtz AI Consultants Team (HLST)
 - https://tinyurl.com/CovidNetXHelmholtz
- SunGAN: Distributed GAN Training for Generating High Resolution Solar Observations
 - GFZ Potsdam & JSC, CST-DL & Helmholtz AI HLST
- HeAT (Helmholtz Analytics Toolkit): numPy for MPI, large-scale generic tensor computing
 - https://github.com/helmholtz-analytics/heat/
- Modular Supercomputers : JUWELS & JUWELS Booster, more to come

DISTRIBUTED TRAINING: ACTIVITIES AT JSC

- Distributed Training for Hyperspectral Remote Sensing
- Helmholtz Al Research Group at INM-1: distributed deep learning for neuroimaging
- Juelich Data Sets Challenge: Platform for collaborative datasets and model training
 - CST-DL & Helmholtz AI HLST: https://data-challenges.fz-juelich.de/
- TOAR: Earth System Data Exploration (ESDE) Lab
- JULAIN: Juelich Artificial Intelligence Network, join in!
 - mailing list: https://lists.fz-juelich.de/mailman/listinfo/ml

