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GENERATIVE MODELS

Impressive progress in last years, algorithmic/architectural
improvements coupled with large scale training
Lot of different applications: image generation, text generation,
speech synthesis, and more

Karras et al. (2020)
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GENERATIVE MODELS

Impressive progress in last years, algorithmic improvements
coupled with large scale training
Lot of different applications: image generation, text generation,
speech synthesis, and more
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GENERATIVE MODELS: BASICS

The general setup: we have a set of samples x1, x2, ..., xN drawn
i.i.d. from an unknown probability distribution p(x). We would
like to learn a model M, which we can use to generate samples
from p
Different formulations, training algorithms, architectures
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GENERATIVE MODELS, DENSITY MODELING

We model the underlying data distribution of the data p(x) with
a surrogate distribution q(x), i.e. q(x) ≈ p(x) for some similarity
between probability distributions
In generative modeling, x is in general a high-dimensional
vector (e.g. image, sound, text)
A common similarity measure used is the Kullback–Leibler (KL)
divergence:

DKL(p ‖ q) =
∫

p(x) log
p(x)
q(x)

dx
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GENERATIVE MODELS, KL DIVERGENCE

Connection to information theory and compression:
DKL(p ‖ q) = (−

∫
p(x) log q(x)dx)− (−

∫
p(x) log p(x)dx) =

H(p,q)− H(p)
Connection to maximum likelihood: For a parametrized model
qΘ, maximization of the likelihood

maxΘ[Ex∼p log qΘ(x)] ≈
∑

i

log qΘ(xi), xi ∼ p

is equivalent to minimizing the KL divergence between qΘ and p
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TAXONOMY OF GENERATIVE MODELS
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APPLICATIONS: IMAGE RECOVERY

We can upscale images, denoise them, fill/recover missing
parts (inpainting)
In this case, we model p(x |x̃) where x̃ is x with some
information destroyed ,e.g. by blurring or noise introduction, and
we would like to recover that information
Examples: TecoGAN (Chu et al. 2020), DeblurGAN (Kupyn et
al. 2018), UCTGAN (Zhao et al. 2020)
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APPLICATIONS: CONDITIONAL IMAGE GENERATION

We can generate images based on labels, or feature vectors, or
natural language
In this case, we model p(x |y), where x is the image and y is the
label, represented as a feature vector, a category, or a
sequence of tokens (y = y1, ..., ym, where m is the number of
tokens)

(Brock, Donahue, and Simonyan 2019)
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APPLICATIONS: CONDITIONAL IMAGE GENERATION

What would a “penguin made of apples” look like?

(OpenAI’s DALL-E https://openai.com/blog/dall-e/) 9/31
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APPLICATIONS: IMAGE-TO-IMAGE MODELS

We can learn a mapping from images to images or from videos
to videos, either with paired samples or unpaired ones.
Examples: Pix2Pix (Isola et al. 2018), CycleGAN (Zhu et al.
2020), Pix2PixHD (Wang et al. 2018), SPADE (Park et al.
2019), StarGANv2 (Choi et al. 2020)
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APPLICATIONS: SPEECH SYNTHESIS

WaveNet

(Oord et al. 2016)
Tacotron2

(Shen et al. 2018)
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APPLICATIONS: MUSIC GENERATION

Jukebox (https://openai.com/blog/jukebox/)

(Dhariwal et al. 2020)
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APPLICATIONS: TEXT GENERATION

GPT-3 (Brown et al. 2020)

Source: https://bit.ly/3tqM8Sr, https://bit.ly/39KHNSe,
https://bit.ly/3tvipHR
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APPLICATIONS: REINFORCEMENT LEARNING

We can simulate possible futures given the past. Application for
reinforcement learning: learning world models and planning

(Hafner et al. 2020), (Kim et al. 2020)
14/31



GENERATIVE ADVERSARIAL NETWORKS

We have samples from a probabilistic distribution p, and we
would like to learn a generator model that generates samples
from x ∼ p(x)
Discriminator is trained to distinguish between real and
generated samples
Generator is trained to fool the discriminator
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GENERATIVE ADVERSARIAL NETWORKS –
FORMULATION

min
G

max
D

[
Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G(z)))]

]
D(x): probability that an image is real
D(G(z)): probabilty that a generated image is real, where
z ∼ N(0,1)
Ex∼pdata(x)[logD(x)]: discriminator on real data
Ez∼pz (z)[log(1− D(G(z)))]: discriminator on generated data
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GENERATIVE ADVERSARIAL NETWORKS – IDEAL
CASE

Generative Adversarial Networks (Goodfellow et al. 2014)
shows that for a fixed generator G, the optimal discriminator is:
D∗G(x) =

pdata(x)
pdata+pg(x)

They also show that the global optimal solution of the problem
minimizes: − log 4 + 2 · JSD(pdata ‖ pg), where the JSD is a
measure between probability distributions
Since the JSD is non-negative, the globally optimal solution for
the generator is the data distribution pg = pdata
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GENERATIVE ADVERSARIAL NETWORKS – TRAINING

In practice, we alternate between updating the generator and
updating the discriminator
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GENERATIVE ADVERSARIAL NETWORKS – ISSUES

Mode collapse
Non-convergence
Vanishing gradient

(Illustration of mode collapse)
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THE DCGAN ARCHITECTURE

Removed fully connected layers: fully Convolutional
architecture for generator and discriminator
Uses batch normalization to stabilize training
One of the first architectures that worked well in practice on
several datasets
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THE DCGAN ARCHITECTURE – VECTOR ARITHMETICS

Interpretable directions in the latent space
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THE DCGAN ARCHITECTURE – INTERPOLATION IN
LATENT SPACE

Smooth interpolation between generated images using the
latent space
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EVALUATION METRICS

In general, it’s still an open question how to evaluate a
generative model; in a lot of cases human visualization is still
needed
In the ideal case, metrics should be task-specific (Theis, Oord,
and Bethge 2016) and evaluate your generative model
depending on how you will use it
Most common metrics used: Fréchet Inception Distance (FID)
(Heusel et al. 2018), Inception Score (Salimans et al. 2016),
precision and recall (Kynkäänniemi et al. 2019)
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SUMMARY

Impressive progress during last years
Model sizes and data are getting bigger
Lot of different applications: image generation, text generation,
speech synthesis, and more
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