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GENERATIVE MODELS

= Impressive progress in last years, algorithmic/architectural
improvements coupled with large scale training

= Lot of different applications: image generation, text generation,
speech synthesis, and more
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GENERATIVE MODELS: BASICS

= The general setup: we have a set of samples x1, X2, ..., xy drawn
i.i.d. from an unknown probability distribution p(x). We would
like to learn a model M, which we can use to generate samples
from p

= Different formulations, training algorithms, architectures
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GENERATIVE MODELS, DENSITY MODELING

= We model the underlying data distribution of the data p(x) with
a surrogate distribution q(x), i.e. g(x) = p(x) for some similarity
between probability distributions

= |n generative modeling, x is in general a high-dimensional
vector (e.g. image, sound, text)

= A common similarity measure used is the Kullback—Leibler (KL)
divergence:

Dk (Pl q) = / p(x)log ZEX dx
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GENERATIVE MODELS, KL DIVERGENCE

= Connection to information theory and compression:
Di(p || 9) = (= [ p(x)log q(x)dx) — (— [ p(x) log p(x)dx) =

H(p,q) — H(p)
= Connection to maximum likelihood: For a parametrized model

Qo, maximization of the likelihood

maxe[EXNp |og qG(X)] ~ Z |Og qG)(X,'), Xji~ P

is equivalent to minimizing the KL divergence between gg and p
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TAXONOMY OF GENERATIVE MODELS

Maximum Likelihood
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APPLICATIONS: IMAGE RECOVERY

= We can upscale images, denoise them, fill/recover missing
parts (inpainting)

= In this case, we model p(x|x) where X is x with some
information destroyed ,e.g. by blurring or noise introduction, and
we would like to recover that information

= Examples: TecoGAN (Chu et al. 2020), DeblurGAN (Kupyn et
al. 2018), UCTGAN (Zhao et al. 2020)
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APPLICATIONS: CONDITIONAL IMAGE GENERATION

= We can generate images based on labels, or feature vectors, or
natural language

= In this case, we model p(x|y), where x is the image and y is the
label, represented as a feature vector, a category, or a
sequence of tokens (y = y, ..., ¥m, where m is the number of
tokens)

3
b vkl

(Brock, Donahue, and Simonyan 2019)
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APPLICATIONS: CONDITIONAL IMAGE GENERATION

= What would a “penguin made of apples” look like?

oMpT @ penguin made of apple. a penguin with the texture of an apple.

&
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e

(OpenAl's DALL-E https://openai.com/blog/dall-e/) 9/31



https://openai.com/blog/dall-e/

APPLICATIONS: IMAGE-TO-IMAGE MODELS

= We can learn a mapping from images to images or from videos
to videos, either with paired samples or unpaired ones.
Examples: Pix2Pix (Isola et al. 2018), CycleGAN (Zhu et al.
2020), Pix2PixHD (Wang et al. 2018), SPADE (Park et al.
2019), StarGANv2 (Choi et al. 2020)

vid2vid _ pix2pixHD
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APPLICATIONS: SPEECH SYNTHESIS

= \WaveNet

NTDRES— s - i

(Oord et al. 2016)
= Tacotron2

(Shen et al. 2018)
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APPLICATIONS: MUSIC GENERATION

= Jukebox (https://openai.com/blog/jukebox/)

songs, de of rerates codes from top to
bottom level, after which the bottom-level decoder can convert them to raw audio.

uuuuuuuu

(Dhariwal et al. 2020)
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https://openai.com/blog/jukebox/

APPLICATIONS: TEXT GENERATION
= GPT-3 (Brown et al. 2020)

[23] prompt = "Get salary details of the Workers whose AGE lies between 25 and 35°

[24]) print(gpt.get_top_reply(prompt))

[+ output: Select Salary from Worker where AGE between 25 and 35;

> python nlsh.py
) nlsh> what day is it?
Equation description >>> Run: date +%A [Y/n):
Wednesday
nlsh> no, I mean the full date
integral from a to b of f(t) with respect to t = F of b minus F of 55> Run: date +%F [Y/n]:
2820-86-10
nlsh> could you print them both together?
>>> Run:  date +%A %F [¥/nl:
date: illegal time format
usage: date [-jnRul [-d dst] [-r seconds] [-t west] [-v[+|-JvallymwdHMs]] ...
(-f fmt date | ([(mm)dd)HHIMM[(cclyy)(.ss)) (+format)
nlsh> I think you forgot the quotes
" b P(b)-F(a >>> Run: date '+XA F' [Y/n]:
[, f(tydt = [ ===t Wednesday 2020-86-18
s g ' nlsh> clone the openai gym repo and install it
>>> Run: git clone https://github.com/cpenai/gym.git & cd gym && python setup.py install [¥/nl: [

(0]o]¢]

Source: https://bit.1y/3tgM8Sr, https://bit.1ly/39KHNSe,

https://bit.ly/3tvipHR
ps://bit.ly/3tvip i


https://bit.ly/3tqM8Sr
https://bit.ly/39KHNSe
https://bit.ly/3tvipHR

APPLICATIONS: REINFORCEMENT LEARNING

= We can simulate possible futures given the past. Application for
reinforcement learning: learning world models and planning

Context 6 10 15 20 25 30 35 40 45

Model True

Model True

(Hafner et al. 2020), (Kim et al. 2020)
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GENERATIVE ADVERSARIAL NETWORKS

= We have samples from a probabilistic distribution p, and we
would like to learn a generator model that generates samples
from x ~ p(x)

= Discriminator is trained to distinguish between real and
generated samples

= Generator is trained to fool the discriminator

> Discriminator
Sample
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GENERATIVE ADVERSARIAL NETWORKS -
FORMULATION

m(i;n max []EXdiata(X)[log D(x)] + Ezp,(z)[log(1 — D(G(Z)))H

= D(x): probability that an image is real

= D(G(z2)): probabilty that a generated image is real, where
z~N(0,1)

" Eypua(x)[log D(X)]: discriminator on real data

= £, p,(2)[log(1 — D(G(2)))]: discriminator on generated data
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GENERATIVE ADVERSARIAL NETWORKS - IDEAL
CASE

= Generative Adversarial Networks (Goodfellow et al. 2014)
shows that for a fixed generator G, the optimal discriminator is:

* _ Pdata(X)
D G(X )= pdati"‘pg(x)

= They also show that the global optimal solution of the problem
minimizes: —log4 + 2 - JSD(Pgata || pg), Where the JSD is a
measure between probability distributions

= Since the JSD is non-negative, the globally optimal solution for
the generator is the data distribution py = Pyata
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GENERATIVE ADVERSARIAL NETWORKS - TRAINING

= |n practice, we alternate between updating the generator and
updating the discriminator

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do
 Sample minibatch of = noise samples {z(1), ..., 2(™} from noise prior p,(z).
e Sample minibatch of m examples {m“). . .,z(’”>} from data generating distribution

Paaa()-
e Update the discriminator by ascending its stochastic gradient:

%0k 3l (50) s (19 6 (+9)))]

i=1

end for
+ Sample minibatch of m noise samples {z“), R z(”’>} from noise prior py(z).
« Update the generator by descending its stochastic gradient:

v, L 21&, (1-0(c(=2))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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GENERATIVE ADVERSARIAL NETWORKS - ISSUES

= Mode collapse
= Non-convergence
= Vanishing gradient

(Hlustration of mode collapse)
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THE DCGAN ARCHITECTURE

= Removed fully connected layers: fully Convolutional
architecture for generator and discriminator
= Uses batch normalization to stabilize training

= One of the first architectures that worked well in practice on

several datasets
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THE DCGAN ARCHITECTURE - VECTOR ARITHMETICS

= Interpretable directions in the latent space

smiling neutral neutral

smiling man
woman woman man g
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THE DCGAN ARCHITECTURE - INTERPOLATION IN
LATENT SPACE

= Smooth interpolation between generated images using the
latent space
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EVALUATION METRICS

= |n general, it’s still an open question how to evaluate a
generative model; in a lot of cases human visualization is still
needed

= |n the ideal case, metrics should be task-specific (Theis, Oord,
and Bethge 2016) and evaluate your generative model
depending on how you will use it

= Most common metrics used: Fréchet Inception Distance (FID)
(Heusel et al. 2018), Inception Score (Salimans et al. 2016),
precision and recall (Kynkaanniemi et al. 2019)

23/31



SUMMARY

= |[mpressive progress during last years

= Model sizes and data are getting bigger

= Lot of different applications: image generation, text generation,
speech synthesis, and more
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