DAY 5: ADVANCED GENERATIVE ADVERSARIAL NETWORKS (GANS)

2021-02-05 | Mehdi Cherti | Cross Sectional Team Deep Learning, Helmholtz Al @ JSC

GENERATIVE MODELS

 Impressive progress in last years, algorithmic improvements coupled with large scale training and large models

(Source: https://bit.ly/3azTV7J)

- BigGAN (Brock, Donahue, and Simonyan 2019) was the first architecture to scale to ImageNet-1K
- Trained on high resolution up to 512x512, and have high diversity and high quality samples

- Model much larger than previous works: scaling width and and depth
- Batch size (up to 2048) much bigger than previous works
- Benefit of scaling the model: reach better performance in fewer iterations

Batch	Ch.	Param (M)	Shared	Skip-z	Ortho.	Itr $\times 10^3$	FID	IS
256	64	81.5	SA-GAN Baseline			1000	18.65	52.52
512	64	81.5	X	X	X	1000	15.30	$58.77(\pm 1.18)$
1024	64	81.5	X	X	X	1000	14.88	$63.03(\pm 1.42)$
2048	64	81.5	X	X	X	732	12.39	$76.85(\pm 3.83)$
2048	96	173.5	X	X	Х	$295(\pm 18)$	$9.54(\pm 0.62)$	$92.98(\pm 4.27)$
2048	96	160.6	✓	X	Х	$185(\pm 11)$	$9.18(\pm 0.13)$	$94.94(\pm 1.32)$
2048	96	158.3	✓	✓	Х	$152(\pm 7)$	$8.73(\pm0.45)$	$98.76(\pm 2.84)$
2048	96	158.3	✓	✓	✓	$165(\pm 13)$	$8.51(\pm0.32)$	$99.31(\pm 2.10)$
2048	64	71.3	✓	✓	✓	$371(\pm 7)$	$10.48(\pm 0.10)$	$86.90(\pm0.61)$

Ch.	Param (M)	Shared	Skip-z	Ortho.	FID	IS	(min FID) / IS	FID / (max IS)
64	317.1	X	X	X	48.38	23.27	48.6/23.1	49.1/23.9
64	99.4	✓	1	✓	23.48	24.78	22.4/21.0	60.9/35.8

- 512x512 resolution model trained on 512 TPUs (TPU v3 pod)
- Training takes between 24 hours and 48 hours for most models
- Results as model size is increased:

 a lot of tuning is necessary in experimentation, before finding the good range of hyper-parameters

We performed various hyperparameter sweeps in this work:

- We swept the Cartesian product of the learning rates for each network through [10⁻⁵, 5·10⁻⁵, 10⁻⁴, 2·10⁻⁴, 4·10⁻⁴, 8·10⁻⁴, 10⁻³], and initially found that the SA-GAN settings (G's learning rate 10⁻⁴, D's learning rate 4·10⁻⁴) were optimal at lower batch sizes; we did not repeat this sweep at higher batch sizes but did try halving and doubling the learning rate, arriving at the halved settings used for our experiments.
- We swept the R1 gradient penalty strength through [10⁻³, 10⁻², 10⁻¹, 0.5, 1, 2, 3, 5, 10].
 We find that the strength of the penalty correlates negatively with performance, but that settings above 0.5 impart training stability.
- We swept the keep probabilities for DropOut in the final layer of D through [0.5, 0.6, 0.7, 0.8, 0.9, 0.95]. We find that DropOut has a similar stabilizing effect to R1 but also degrades performance.
- We swept D's Adam β₁ parameter through [0.1, 0.2, 0.3, 0.4, 0.5] and found it to have a light regularization effect similar to DropOut, but not to significantly improve results. Higher β₁ terms in either network crippled training.
- We swept the strength of the modified Orthogonal Regularization penalty in **G** through $[10^{-5}, 5\cdot 10^{-5}, 10^{-4}, 5\cdot 10^{-4}, 10^{-3}, 10^{-2}]$, and selected 10^{-4} .

- BigBiGAN(Donahue and Simonyan 2019) asked the following question: can GANs learn a useful general representation from unlabeled data?
- Can we learn high level concepts that we can exploit for downstream tasks?

- Similar to BigGAN but in addition to discriminator and generator, we also have an encoder
- Three networks to optimize simultanously

- Training on ImageNet-1K up to 256x256 resolution, completely unsupervised (no conditioning)
- Training on 32 to 512 TPU cores
- Batch size of 2048 similar to BigGAN
- Architecture similar to BigGAN for generator and discriminator, for encoder architecture is based on ResNet-50

Learned representation focus on high-level semantic details

- Better image modeling (FID) translates to better performance in downstream task (supervised classification)
- Bigger models perform better in downstream task (supervised classification)

- StyleGAN/StyleGAN2 (Karras et al. 2020) introduces a novel way to structure the generator architecture
- It decomposes the latent space into high level attributes (encoding concepts such pose and identity) and stochastic variation (e.g., to handle freckles and hair)

(a) Generated image

(b) Stochastic variation

- The latent z is converted to w = f(z) using 8 fully connected layers f
- The w vector is then mapped to a style vector using a fully connected network for each resolution. One style vector per resolution.

- One block per resolution, each block upsample by 2
- Each resolution block is affected by its dedicated style vector A and noise B

- No need progressive generation like in ProGAN (Karras et al. 2018)
- The generated image RGBs are a sum of RGBs from each resolution outputs, everything is learned simultanously

14/18

 Larger configuration network renders high resolution details better

- Distributed training on 8 V100 GPUs
- Reduce training time from 70 days with 1 GPU to 10 days with 8 GPUs

Configuration	Resolution	Total kimg	1 GPU	2 GPUs	4 GPUs	8 GPUs	GPU mem
config-f	1024×1024	25000	69d 23h	36d 4h	18d 14h	9d 18h	13.3 GB
config-f	1024×1024	10000	27d 23h	14d 11h	7d 10h	3d 22h	13.3 GB
config-e	1024×1024	25000	35d 11h	18d 15h	9d 15h	5d 6h	8.6 GB
config-e	1024×1024	10000	14d 4h	7d 11h	3d 20h	2d 3h	8.6 GB
config-f	256×256	25000	32d 13h	16d 23h	8d 21h	4d 18h	6.4 GB
config-f	256×256	10000	13d 0h	6d 19h	3d 13h	1d 22h	6.4 GB

 One should not forget the cost of exploration as well: 51 GPU years was required in total

Item	GPU years (Volta)	Electricity (MWh)
Initial exploration	20.25	58.94
Paper exploration	13.71	31.49
FFHQ config F	0.23	0.68
Other runs in paper	7.20	16.77
Backup runs left out	4.73	12.08
Video, figures, etc.	0.31	0.82
Public release	4.62	10.82
Total	51.05	131.61

SUMMARY

- We have seen different architectures proposed in the literature
- The GANs are in general costly to train, especially with larger resolutions and for large datasets.
- Distributed training helps to make training faster

REFERENCES I

Brock, Andrew, Jeff Donahue, and Karen Simonyan. 2019. "Large Scale Gan Training for High Fidelity Natural Image Synthesis."

http://arxiv.org/abs/1809.11096.

Donahue, Jeff, and Karen Simonyan. 2019. "Large Scale Adversarial Representation Learning."

http://arxiv.org/abs/1907.02544.

Karras, Tero, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018.

"Progressive Growing of Gans for Improved Quality, Stability, and Variation." http://arxiv.org/abs/1710.10196.

Karras, Tero, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. 2020. "Training Generative Adversarial Networks with Limited Data." http://arxiv.org/abs/2006.06676.