000890964 001__ 890964
000890964 005__ 20240712100817.0
000890964 0247_ $$2doi$$a10.5194/acp-21-1267-2021
000890964 0247_ $$2ISSN$$a1680-7316
000890964 0247_ $$2ISSN$$a1680-7324
000890964 0247_ $$2Handle$$a2128/27375
000890964 0247_ $$2altmetric$$aaltmetric:99030035
000890964 0247_ $$2WOS$$aWOS:000614287500003
000890964 037__ $$aFZJ-2021-01280
000890964 082__ $$a550
000890964 1001_ $$0P:(DE-Juel1)129170$$avon Hobe, Marc$$b0$$eCorresponding author
000890964 245__ $$aUpward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
000890964 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000890964 3367_ $$2DRIVER$$aarticle
000890964 3367_ $$2DataCite$$aOutput Types/Journal article
000890964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617261489_9794
000890964 3367_ $$2BibTeX$$aARTICLE
000890964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890964 3367_ $$00$$2EndNote$$aJournal Article
000890964 520__ $$aEvery year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayas. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact timescales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017, respectively, show a steady decrease in carbon monoxide (CO) and increase in ozone (O3) with height starting from tropospheric values of around 100 ppb CO and 30–50 ppb O3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values below ∼25 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N2O) remains at or only marginally below its 2017 tropospheric mixing ratio of 333 ppb up to about 400 K, which is above the local tropopause. A decline in N2O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.7–1.5 K d−1. For the key tracers (CO, O3, and N2O) in our study, none of which are subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks a strong discontinuity in their profiles. Up to about 20 to 35 K above the LRT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air (throughout this text, the term in-mixing refers specifically to mixing processes that introduce stratospheric air into the predominantly tropospheric inner anticyclone). The observed changes in CO and O3 likely result from in situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
000890964 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000890964 536__ $$0G:(EU-Grant)603557$$aSTRATOCLIM - Stratospheric and upper tropospheric processes for better climate predictions (603557)$$c603557$$fFP7-ENV-2013-two-stage$$x1
000890964 536__ $$0G:(GEPRIS)392169209$$aDFG project 392169209 - Klimavariabilität in der oberen Troposphäre und Stratosphäre über Asien und ihre Darstellung in modernen Re-Analysen $$c392169209$$x2
000890964 588__ $$aDataset connected to CrossRef
000890964 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b1$$ufzj
000890964 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b2$$ufzj
000890964 7001_ $$0P:(DE-Juel1)161426$$aKloss, Corinna$$b3
000890964 7001_ $$0P:(DE-HGF)0$$aUlanowski, Alexey$$b4
000890964 7001_ $$0P:(DE-HGF)0$$aYushkov, Vladimir$$b5
000890964 7001_ $$0P:(DE-HGF)0$$aRavegnani, Fabrizio$$b6
000890964 7001_ $$0P:(DE-Juel1)168493$$aVolk, C. Michael$$b7
000890964 7001_ $$0P:(DE-HGF)0$$aPan, Laura L.$$b8
000890964 7001_ $$0P:(DE-HGF)0$$aHonomichl, Shawn B.$$b9
000890964 7001_ $$00000-0002-6557-3569$$aTilmes, Simone$$b10
000890964 7001_ $$0P:(DE-HGF)0$$aKinnison, Douglas E.$$b11
000890964 7001_ $$00000-0002-6963-4592$$aGarcia, Rolando R.$$b12
000890964 7001_ $$00000-0001-6551-7017$$aWright, Jonathon S.$$b13
000890964 770__ $$aStratoClim stratospheric and upper tropospheric processes for better climate predictions
000890964 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-1267-2021$$gVol. 21, no. 2, p. 1267 - 1285$$n2$$p1267 - 1285$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000890964 8564_ $$uhttps://juser.fz-juelich.de/record/890964/files/invoice_Helmholtz-PUC-2021-21.pdf
000890964 8564_ $$uhttps://juser.fz-juelich.de/record/890964/files/acp-21-1267-2021.pdf$$yOpenAccess
000890964 8767_ $$8Helmholtz-PUC-2021-21$$92021-04-01$$d2021-04-12$$eAPC$$jZahlung erfolgt$$pacp-2020-891$$zBelegnr. 1200165527 / 2021
000890964 909CO $$ooai:juser.fz-juelich.de:890964$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich$$b0$$kFZJ
000890964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b1$$kFZJ
000890964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b2$$kFZJ
000890964 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000890964 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000890964 9141_ $$y2021
000890964 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000890964 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890964 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890964 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000890964 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000890964 920__ $$lyes
000890964 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000890964 9801_ $$aAPC
000890964 9801_ $$aFullTexts
000890964 980__ $$ajournal
000890964 980__ $$aVDB
000890964 980__ $$aI:(DE-Juel1)IEK-7-20101013
000890964 980__ $$aAPC
000890964 980__ $$aUNRESTRICTED
000890964 981__ $$aI:(DE-Juel1)ICE-4-20101013