000890967 001__ 890967
000890967 005__ 20230111074306.0
000890967 0247_ $$2doi$$a10.1109/IGARSS39084.2020.9323544
000890967 0247_ $$2ISSN$$a0022-7722
000890967 0247_ $$2ISSN$$a1447-073X
000890967 0247_ $$2ISSN$$a1447-6959
000890967 0247_ $$2Handle$$a2128/27294
000890967 0247_ $$2WOS$$aWOS:000664335302007
000890967 037__ $$aFZJ-2021-01283
000890967 082__ $$a610
000890967 1001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b0$$eCorresponding author$$ufzj
000890967 1112_ $$a2020 IEEE International Geoscience and Remote Sensing Symposium$$cOnline event$$d2020-09-26 - 2020-10-02$$gIGARSS 2020$$wHawaii
000890967 245__ $$aApproaching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer
000890967 260__ $$bIEEE$$c2020
000890967 300__ $$a1973 - 1976
000890967 3367_ $$2ORCID$$aCONFERENCE_PAPER
000890967 3367_ $$033$$2EndNote$$aConference Paper
000890967 3367_ $$2BibTeX$$aINPROCEEDINGS
000890967 3367_ $$2DRIVER$$aconferenceObject
000890967 3367_ $$2DataCite$$aOutput Types/Conference Paper
000890967 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1615188920_4749
000890967 520__ $$aSupport Vector Machine (SVM) is a popular supervised MachineLearning (ML) method that is widely used for classificationand regression problems. Recently, a method to trainSVMs on a D-Wave 2000Q Quantum Annealer (QA) was proposedfor binary classification of some biological data. First,ensembles of weak quantum SVMs are generated by trainingeach classifier on a disjoint training subset that can be fitinto the QA. Then, the computed weak solutions are fusedfor making predictions on unseen data. In this work, the classificationof Remote Sensing (RS) multispectral images withSVMs trained on a QA is discussed. Furthermore, an opencode repository is released to facilitate an early entry into thepractical application of QA, a new disruptive compute technology.
000890967 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000890967 588__ $$aDataset connected to CrossRef Conference
000890967 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b1$$ufzj
000890967 7001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b2$$ufzj
000890967 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj
000890967 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b4$$ufzj
000890967 773__ $$a10.1109/IGARSS39084.2020.9323544
000890967 8564_ $$uhttps://juser.fz-juelich.de/record/890967/files/Cavallaro_Gabriele_IGARSS_2020.pdf$$yOpenAccess
000890967 909CO $$ooai:juser.fz-juelich.de:890967$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b0$$kFZJ
000890967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b1$$kFZJ
000890967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b2$$kFZJ
000890967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000890967 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b4$$kFZJ
000890967 9130_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000890967 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000890967 9141_ $$y2021
000890967 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000890967 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000890967 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000890967 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000890967 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANAT SCI INT : 2015
000890967 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000890967 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000890967 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000890967 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890967 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000890967 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000890967 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000890967 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000890967 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000890967 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000890967 980__ $$acontrib
000890967 980__ $$aVDB
000890967 980__ $$aUNRESTRICTED
000890967 980__ $$aI:(DE-Juel1)JSC-20090406
000890967 9801_ $$aFullTexts