Home > Publications database > Approaching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer > print |
001 | 890967 | ||
005 | 20230111074306.0 | ||
024 | 7 | _ | |a 10.1109/IGARSS39084.2020.9323544 |2 doi |
024 | 7 | _ | |a 0022-7722 |2 ISSN |
024 | 7 | _ | |a 1447-073X |2 ISSN |
024 | 7 | _ | |a 1447-6959 |2 ISSN |
024 | 7 | _ | |a 2128/27294 |2 Handle |
024 | 7 | _ | |a WOS:000664335302007 |2 WOS |
037 | _ | _ | |a FZJ-2021-01283 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a 2020 IEEE International Geoscience and Remote Sensing Symposium |g IGARSS 2020 |c Online event |d 2020-09-26 - 2020-10-02 |w Hawaii |
245 | _ | _ | |a Approaching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer |
260 | _ | _ | |c 2020 |b IEEE |
300 | _ | _ | |a 1973 - 1976 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1615188920_4749 |2 PUB:(DE-HGF) |
520 | _ | _ | |a Support Vector Machine (SVM) is a popular supervised MachineLearning (ML) method that is widely used for classificationand regression problems. Recently, a method to trainSVMs on a D-Wave 2000Q Quantum Annealer (QA) was proposedfor binary classification of some biological data. First,ensembles of weak quantum SVMs are generated by trainingeach classifier on a disjoint training subset that can be fitinto the QA. Then, the computed weak solutions are fusedfor making predictions on unseen data. In this work, the classificationof Remote Sensing (RS) multispectral images withSVMs trained on a QA is discussed. Furthermore, an opencode repository is released to facilitate an early entry into thepractical application of QA, a new disruptive compute technology. |
536 | _ | _ | |a 512 - Data-Intensive Science and Federated Computing (POF3-512) |0 G:(DE-HGF)POF3-512 |c POF3-512 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Willsch, Dennis |0 P:(DE-Juel1)167542 |b 1 |u fzj |
700 | 1 | _ | |a Willsch, Madita |0 P:(DE-Juel1)167543 |b 2 |u fzj |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 3 |u fzj |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 4 |u fzj |
773 | _ | _ | |a 10.1109/IGARSS39084.2020.9323544 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890967/files/Cavallaro_Gabriele_IGARSS_2020.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:890967 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171343 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167542 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)167543 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138295 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132239 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-512 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Data-Intensive Science and Federated Computing |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANAT SCI INT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|