001     890967
005     20230111074306.0
024 7 _ |a 10.1109/IGARSS39084.2020.9323544
|2 doi
024 7 _ |a 0022-7722
|2 ISSN
024 7 _ |a 1447-073X
|2 ISSN
024 7 _ |a 1447-6959
|2 ISSN
024 7 _ |a 2128/27294
|2 Handle
024 7 _ |a WOS:000664335302007
|2 WOS
037 _ _ |a FZJ-2021-01283
082 _ _ |a 610
100 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2020 IEEE International Geoscience and Remote Sensing Symposium
|g IGARSS 2020
|c Online event
|d 2020-09-26 - 2020-10-02
|w Hawaii
245 _ _ |a Approaching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer
260 _ _ |c 2020
|b IEEE
300 _ _ |a 1973 - 1976
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1615188920_4749
|2 PUB:(DE-HGF)
520 _ _ |a Support Vector Machine (SVM) is a popular supervised MachineLearning (ML) method that is widely used for classificationand regression problems. Recently, a method to trainSVMs on a D-Wave 2000Q Quantum Annealer (QA) was proposedfor binary classification of some biological data. First,ensembles of weak quantum SVMs are generated by trainingeach classifier on a disjoint training subset that can be fitinto the QA. Then, the computed weak solutions are fusedfor making predictions on unseen data. In this work, the classificationof Remote Sensing (RS) multispectral images withSVMs trained on a QA is discussed. Furthermore, an opencode repository is released to facilitate an early entry into thepractical application of QA, a new disruptive compute technology.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 1
|u fzj
700 1 _ |a Willsch, Madita
|0 P:(DE-Juel1)167543
|b 2
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 4
|u fzj
773 _ _ |a 10.1109/IGARSS39084.2020.9323544
856 4 _ |u https://juser.fz-juelich.de/record/890967/files/Cavallaro_Gabriele_IGARSS_2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890967
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132239
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Data-Intensive Science and Federated Computing
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAT SCI INT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21