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ABSTRACT

Support Vector Machine (SVM) is a popular supervised Ma-
chine Learning (ML) method that is widely used for classifi-
cation and regression problems. Recently, a method to train
SVMs on a D-Wave 2000Q Quantum Annealer (QA) was pro-
posed for binary classification of some biological data. First,
ensembles of weak quantum SVMs are generated by train-
ing each classifier on a disjoint training subset that can be fit
into the QA. Then, the computed weak solutions are fused
for making predictions on unseen data. In this work, the clas-
sification of Remote Sensing (RS) multispectral images with
SVMs trained on a QA is discussed. Furthermore, an open
code repository is released to facilitate an early entry into the
practical application of QA, a new disruptive compute tech-
nology.

Index Terms— Quantum computation, quantum anneal-
ing, support vector machine, classification, multispectral im-
age, remote sensing

1. INTRODUCTION

Support Vector Machines (SVMs) are non-parametric statis-
tical approaches that can be adopted to analyze data and rec-
ognize patterns for supervised classification and regression
problems [1]. They rely on the margin maximization principle
to be less sensitive to overfitting [2] and they adopt the ker-
nel trick [3] to generate nonlinear decision functions. In con-
trast to Deep Learning (DL) models [4], which require large
amounts of training data, SVMs are generally used when only
small sets of training samples are available. They have been
intensively used in conjunction with handcrafted features for
solving RS classification problems [5]. Furthermore, SVMs
can be effectively combined with DL classifiers: they can be
either placed on top of deep neural networks to classify the
extracted features [6] or used for the computation of the filter
weights of Convolutional Neural Networks (CNNs) [7].

The advances of ML and Quantum Computing (QC) open
possibilities to address previously untenable problems. Their

The authors would like to thank Prof. Dr. Kristel Michielsen for provid-
ing computing time on the D-Wave 2000Q quantum annealer, in the context
of the project JUNIQ (Jiilich UNified Infrastructure for Quantum computing).

intersection attracted the attention of researchers to study a
combination of both fields, termed quantum ML [8]. Con-
cepts such as superposition and entanglement are considered
to make quantum computers much faster than conventional
computers for certain computational tasks [9]. The two main
paradigms of QC are the gate-based quantum computer and
the Quantum Annealer (QA). Various quantum computers
and annealers with different degrees of technological matu-
rity are available today and to some of them access is provided
by e.g., IBM, Rigetti Computing, Google, lonQ, and D-Wave
Systems. Among those, the D-Wave 2000Q (DW2000Q) QA
has reached an adequate maturity level of QC technology (i.e.,
QTRLS ') for studying prototype practical applications.

In [10], a method is proposed to train SVMs classifiers
on a DW2000Q QA [11]. The SVM optimization problem
is expressed as a Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problem. First, ensembles of quantum weak
SVMs are generated by training each classifier on a small dis-
joint training subset. Splitting the whole training set is neces-
sary because of the limited connectivity of the Chimera graph
architecture of the DW2000Q quantum processor [11]. Next,
the trained ensemble is used to classify an arbitrary number
of unseen samples.

The contribution of this work is twofold: on the one hand,
the classification of RS images is approached with the quan-
tum ensemble of SVMs. To do so, experiments are conducted
on two labeled multispectral datasets that are available to the
public. On the other hand, an open repository that includes
the Python code and the processing pipeline documented in
a Jupyter notebook is released 2. Since everyone can make a
free account on the DW2000Q QA 3, this enables reproducing
the classification results and facilitates an early entry into the
practical application of QA, a new disruptive compute tech-
nology, in general.

1https ://www.fz-juelich.de/ias/jsc/EN/Research/
ModellingSimulation/QIP/QTRL/_node.html

2https ://gitlab.version.fz-juelich.de/cavallarol/svm_
quantum-annealer.git

3https ://www.dwavesys.com/take-leap



2. SUPPORT VECTOR MACHINES ON A QUANTUM
ANNEALER

2.1. Background

A SVM learns its parameters from a set of annotated training
samples D = {(Xp,y,) :n=0,..., N — 1}, with x,, € R?
being a feature vector and vy, its label. A SVM separates the
samples of different classes in their feature space by tracing
maximum margin hyperplanes. The training consists of solv-
ing a Quadratic Programming (QP) problem [12]:
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For N coefficients «,, € R, where C' is a regulariza-
tion parameter and k(.,.) is a kernel function that enables a
SVM to compute non-linear decision functions (by means of
the kernel trick [3]). The type of kernel function which is
most commonly used is the Radial Basis Function (RBF) [3]:
rbf (X, Xp) = e~ 7 =%mll* The SVM decision boundary
is based on the samples corresponding to «,, # 0 (i.e., sup-
port vectors). The prediction for an arbitrary sample x € R?
can be made by evaluating the decision function (i.e., signed
distance between the sample x and the decision boundary)

Zanyn (Xn,X) + b, 3)

where the bias b can be computed by [12]
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The class label for x predicted is § = sign(f(x)).
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2.2. Quantum SVM

The DW2000Q QA requires the SVM training to be formu-
lated as a QUBO problem 4110], which is defined as the min-
imization of the energy function

E = ZaiQi]‘a]‘, (5)
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with a; € {0, 1} the binary variables of the optimization prob-
lem, and @) the QUBO weight matrix (i.e., an upper-triangular
matrix of real numbers). Since the solution of Egs. (1)-(2)
consists of real numbers «,, € R and Eq. (§) can only com-
pute discrete solutions, the following encoding is used:
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where agp 4k € {0, 1} are binary variables, K is the number
of binary variables to encode a.,, and B is the base used for
the encoding [10].

The formulation of the QP of Egs. (1)-(2) as QUBO is
obtained through the encoding of Eq. (6) and the introduction
of a multiplier £ to include the first constraint of Eq. (2) as a
squared penalty term:
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where @ is a matrix of size KN x KN given by
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Since @ is symmetric, the upper-triangular QUBO matrix @
is defined by Qij = Qij + jS for i < J and Q“ = Q”
The second constraint of Eq. (2) is automatically included in
Eq. (8) through the encoding given in Eq. (6), since the max-
imum for «, is given by

C:ZK:Bk. (10)

The last step required to run the optimization on the
DW2000Q QA is the embedding procedure [13]. This is
necessary because the QUBO problem given in Eq. (5) in-
cludes some couplers @; ; # 0 between qubit ¢ and qubit
j for which no physical connection exists on the chip (i.e.,
constraint of the Chimera topology of the DW2000Q quan-
tum processor) [10]. The embedding increases the number of
logical connections between the qubits. When no embedding
can be found, the number of nonzero couplers 7, is the
parameter that can be reduced until an embedding is found.
More detailed information about the quantum SVM is given
in [10].

3. EXPERIMENTAL RESULTS

3.1. Dataset

The experiments are carried out on the two multispectral RS
datasets listened in Table 1. They are free and available at
HyperLabelMe [14], which is a web platform that contains
43 image datasets and allows automatic benchmarking of dif-
ferent classifiers. For each dataset, training data pairs (spectra
and land cover/use labels) and test data spectra are provided.



The test labels are not accessible since the predictions need
to be uploaded to HyperLabelMe, which returns the accuracy,
different scores and a ranked list of the best methods from
different users.

Table 1: Datasets used for the classification experiments on
the DW2000Q QA [14].

1D ‘ Sensor ‘ Data points ‘ Train Samples ‘ Classes

Im16 | Landsat | 200x200x7 | 500 | 2

Im40 | Landsat | 200x200x7 | 500 | 2
3.2. Setup

The experiments are conducted on the DW2000Q QA [13].
D-Wave’s Ocean Software ° is the Python library that is used
for generating the embeddings and the executions on the sys-
tem.

The DW2000Q QA computes a variety of close-to-
optimal solutions (i.e., different coefficients {c, }(*) obtained
from Eq. (6)). Many of these solutions may have a slightly
higher energy than the global minimum {a,,}* that can be
found by the classical SVM. However, these solutions can
still solve the classification problem for the training data. For
each run on the DW2000Q QA, the 20 lowest energy samples
from 10,000 reads are kept.

The classification pipeline includes three different phases:
calibration, training, and testing [10]. For both datasets of
Table 1, the training samples are used for both the calibration
and training phase.

3.2.1. Calibration Phase

The SVM on the QA depends on four hyperparameters: the
encoding base B, the number K of quantum bits (qubits)
per coefficient «,,, the multiplier £, and the kernel parame-
ter «v. The parameter n., varies for each run and is not a
parameter of the SVM itself. The hyperparameters are se-
lected through a 10-fold cross-validation. Each training set
includes only 30 samples (i.e., choice due to the limitations
of the QA [10]). The validation includes the remaining sam-
ples that are used for the evaluation of the performance. For
each dataset, the values are calibrated by evaluating the SVM
for B € {2,3,5,10}, K € {2,3}, ¢ € {0,1,5}, and vy €
{-1,0.125,0.25,0.5,1, 2,4, 8}.

3.2.2. Training Phase

To overcome the problem of the limited connectivity of the
Chimera graph of the DW2000Q QA the whole training set
is split into small disjoint subsets D@1 of 40 samples,

Shttps://docs.ocean.dwavesys.com

Table 2: Classification results obtained with the DW2000Q
QA for the data sets listed in Table 1.

ID dataset ‘ OA ‘ Kappa ‘ Z-score
16 | 9426 | 089 | 13471
40 ‘78.90‘ 0.57 ‘ 47.21

with | = 0, ..., int(N/40). The strategy is to build an ensem-
ble of quantum weak SVMs (qeSVMs) where each classifier
is trained on D(t7eim0)  This is achieved in two steps. First,
for each subset D7) the twenty best solutions from the
DW2000Q QA (i.e., gSSVM(B, K, &,v)#i fori = 0,...,19)
are combined by averaging over the respective decision func-
tions f5¥(x) (see Eq. (3)). Since the decision function is lin-
ear in the coefficients and the bias b("?) is computed from
ag ) via Eq. (4), this procedure effectively results in one clas-
sifier with an effective set of coefficients a£f ) — > an ) /20
and bias b' = >, b(-)) /20. Second, an average is made over
the int(IN/40) subsets. Note, however, that the data points

(ngl )» yﬁf )) e Dain.l) are now different for each I. The full
decision function is

1
F(x) = 7 Zag)yfpk (xg),x) + b, (11)
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where b = 37,60 /L. As before, the decision for the class
label of a point x is obtained through ¢ = sign(F(x)).

3.3. Testing Phase

The two selected multispectral RS datasets listed in Table 1
include 500 annotated training samples. This limited amount
of annotated training samples make the data sets suitable for
analysis by a DW2000Q QA. As explained in Sec. 3.2.2, the
training data is split into small disjoint subsets of 40 samples
(i.e., for both datasets, int(N = 500/40) = 12 subsets) to
enable the D-Wave’s Ocean SDK to find the embedding.

The performance of the qeSVMs is evaluated directly on
HyperLabelMe [14]. Table 2 reports the computed metrics for
both datasets. These are the common metrics Overall Accu-
racy (OA), Cohen’s Kappa coefficient (Kappa) and standard
score (z-score). Furthermore, the plots of Fig. 1 depict the
Receiver Operating Characteristic (ROC) and Precision (PR)
curves for a single trained SVM on the subset D(traini=1),
These are more robust metrics that are not based on a single
evaluation of the classifier, but rather on the performance of
the classifier as a function of the bias b in Eq. (4) (more details
are given in [10]). For the training subset D(*7*™!=1) Fig_ |
shows that the qSVM can compute a robust classifier since it
computes almost optical curves for both datasets.
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1: The ROC and PR curves are plotted for gSVM(B =

2,K = 3,6 =1, = 0.250)#0.

4. CONCLUSIONS AND OUTLOOK

The classification of RS multispectral images with SVMs on a
QA was studied. The setup of the procedure and the descrip-

tion

of the framework are available on the repository of this

work. It can be concluded that the QA version of the SVM is
a valuable alternative to the classical SVM for RS classifica-
tion problems where a limited number of training examples is
available.

Future research will focus on conducting more systematic
comparisons between quantum and classical SVMs. This will
include the training of suboptimal ensembles of both classi-
fiers on small datasets.
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